1039 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1039 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b SLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn 
 | |
| of the tridiagonal matrix LDLT - λI. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLAR1V + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slar1v.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slar1v.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slar1v.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, */
 | |
| /*                  PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, */
 | |
| /*                  R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) */
 | |
| 
 | |
| /*       LOGICAL            WANTNC */
 | |
| /*       INTEGER   B1, BN, N, NEGCNT, R */
 | |
| /*       REAL               GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, */
 | |
| /*      $                   RQCORR, ZTZ */
 | |
| /*       INTEGER            ISUPPZ( * ) */
 | |
| /*       REAL               D( * ), L( * ), LD( * ), LLD( * ), */
 | |
| /*      $                  WORK( * ) */
 | |
| /*       REAL             Z( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLAR1V computes the (scaled) r-th column of the inverse of */
 | |
| /* > the sumbmatrix in rows B1 through BN of the tridiagonal matrix */
 | |
| /* > L D L**T - sigma I. When sigma is close to an eigenvalue, the */
 | |
| /* > computed vector is an accurate eigenvector. Usually, r corresponds */
 | |
| /* > to the index where the eigenvector is largest in magnitude. */
 | |
| /* > The following steps accomplish this computation : */
 | |
| /* > (a) Stationary qd transform,  L D L**T - sigma I = L(+) D(+) L(+)**T, */
 | |
| /* > (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, */
 | |
| /* > (c) Computation of the diagonal elements of the inverse of */
 | |
| /* >     L D L**T - sigma I by combining the above transforms, and choosing */
 | |
| /* >     r as the index where the diagonal of the inverse is (one of the) */
 | |
| /* >     largest in magnitude. */
 | |
| /* > (d) Computation of the (scaled) r-th column of the inverse using the */
 | |
| /* >     twisted factorization obtained by combining the top part of the */
 | |
| /* >     the stationary and the bottom part of the progressive transform. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >           The order of the matrix L D L**T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B1 */
 | |
| /* > \verbatim */
 | |
| /* >          B1 is INTEGER */
 | |
| /* >           First index of the submatrix of L D L**T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BN */
 | |
| /* > \verbatim */
 | |
| /* >          BN is INTEGER */
 | |
| /* >           Last index of the submatrix of L D L**T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LAMBDA */
 | |
| /* > \verbatim */
 | |
| /* >          LAMBDA is REAL */
 | |
| /* >           The shift. In order to compute an accurate eigenvector, */
 | |
| /* >           LAMBDA should be a good approximation to an eigenvalue */
 | |
| /* >           of L D L**T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] L */
 | |
| /* > \verbatim */
 | |
| /* >          L is REAL array, dimension (N-1) */
 | |
| /* >           The (n-1) subdiagonal elements of the unit bidiagonal matrix */
 | |
| /* >           L, in elements 1 to N-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >           The n diagonal elements of the diagonal matrix D. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LD */
 | |
| /* > \verbatim */
 | |
| /* >          LD is REAL array, dimension (N-1) */
 | |
| /* >           The n-1 elements L(i)*D(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LLD */
 | |
| /* > \verbatim */
 | |
| /* >          LLD is REAL array, dimension (N-1) */
 | |
| /* >           The n-1 elements L(i)*L(i)*D(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PIVMIN */
 | |
| /* > \verbatim */
 | |
| /* >          PIVMIN is REAL */
 | |
| /* >           The minimum pivot in the Sturm sequence. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GAPTOL */
 | |
| /* > \verbatim */
 | |
| /* >          GAPTOL is REAL */
 | |
| /* >           Tolerance that indicates when eigenvector entries are negligible */
 | |
| /* >           w.r.t. their contribution to the residual. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension (N) */
 | |
| /* >           On input, all entries of Z must be set to 0. */
 | |
| /* >           On output, Z contains the (scaled) r-th column of the */
 | |
| /* >           inverse. The scaling is such that Z(R) equals 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTNC */
 | |
| /* > \verbatim */
 | |
| /* >          WANTNC is LOGICAL */
 | |
| /* >           Specifies whether NEGCNT has to be computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] NEGCNT */
 | |
| /* > \verbatim */
 | |
| /* >          NEGCNT is INTEGER */
 | |
| /* >           If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin */
 | |
| /* >           in the  matrix factorization L D L**T, and NEGCNT = -1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ZTZ */
 | |
| /* > \verbatim */
 | |
| /* >          ZTZ is REAL */
 | |
| /* >           The square of the 2-norm of Z. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] MINGMA */
 | |
| /* > \verbatim */
 | |
| /* >          MINGMA is REAL */
 | |
| /* >           The reciprocal of the largest (in magnitude) diagonal */
 | |
| /* >           element of the inverse of L D L**T - sigma I. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] R */
 | |
| /* > \verbatim */
 | |
| /* >          R is INTEGER */
 | |
| /* >           The twist index for the twisted factorization used to */
 | |
| /* >           compute Z. */
 | |
| /* >           On input, 0 <= R <= N. If R is input as 0, R is set to */
 | |
| /* >           the index where (L D L**T - sigma I)^{-1} is largest */
 | |
| /* >           in magnitude. If 1 <= R <= N, R is unchanged. */
 | |
| /* >           On output, R contains the twist index used to compute Z. */
 | |
| /* >           Ideally, R designates the position of the maximum entry in the */
 | |
| /* >           eigenvector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ISUPPZ */
 | |
| /* > \verbatim */
 | |
| /* >          ISUPPZ is INTEGER array, dimension (2) */
 | |
| /* >           The support of the vector in Z, i.e., the vector Z is */
 | |
| /* >           nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] NRMINV */
 | |
| /* > \verbatim */
 | |
| /* >          NRMINV is REAL */
 | |
| /* >           NRMINV = 1/SQRT( ZTZ ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RESID */
 | |
| /* > \verbatim */
 | |
| /* >          RESID is REAL */
 | |
| /* >           The residual of the FP vector. */
 | |
| /* >           RESID = ABS( MINGMA )/SQRT( ZTZ ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RQCORR */
 | |
| /* > \verbatim */
 | |
| /* >          RQCORR is REAL */
 | |
| /* >           The Rayleigh Quotient correction to LAMBDA. */
 | |
| /* >           RQCORR = MINGMA*TMP */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (4*N) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realOTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Beresford Parlett, University of California, Berkeley, USA \n */
 | |
| /* > Jim Demmel, University of California, Berkeley, USA \n */
 | |
| /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
 | |
| /* > Osni Marques, LBNL/NERSC, USA \n */
 | |
| /* > Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slar1v_(integer *n, integer *b1, integer *bn, real *
 | |
| 	lambda, real *d__, real *l, real *ld, real *lld, real *pivmin, real *
 | |
| 	gaptol, real *z__, logical *wantnc, integer *negcnt, real *ztz, real *
 | |
| 	mingma, integer *r__, integer *isuppz, real *nrminv, real *resid, 
 | |
| 	real *rqcorr, real *work)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1, r__2, r__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer indp, inds, i__;
 | |
|     real s, dplus;
 | |
|     integer r1, r2;
 | |
|     extern real slamch_(char *);
 | |
|     integer indlpl, indumn;
 | |
|     extern logical sisnan_(real *);
 | |
|     real dminus;
 | |
|     logical sawnan1, sawnan2;
 | |
|     real eps, tmp;
 | |
|     integer neg1, neg2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --work;
 | |
|     --isuppz;
 | |
|     --z__;
 | |
|     --lld;
 | |
|     --ld;
 | |
|     --l;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     eps = slamch_("Precision");
 | |
|     if (*r__ == 0) {
 | |
| 	r1 = *b1;
 | |
| 	r2 = *bn;
 | |
|     } else {
 | |
| 	r1 = *r__;
 | |
| 	r2 = *r__;
 | |
|     }
 | |
| /*     Storage for LPLUS */
 | |
|     indlpl = 0;
 | |
| /*     Storage for UMINUS */
 | |
|     indumn = *n;
 | |
|     inds = (*n << 1) + 1;
 | |
|     indp = *n * 3 + 1;
 | |
|     if (*b1 == 1) {
 | |
| 	work[inds] = 0.f;
 | |
|     } else {
 | |
| 	work[inds + *b1 - 1] = lld[*b1 - 1];
 | |
|     }
 | |
| 
 | |
| /*     Compute the stationary transform (using the differential form) */
 | |
| /*     until the index R2. */
 | |
| 
 | |
|     sawnan1 = FALSE_;
 | |
|     neg1 = 0;
 | |
|     s = work[inds + *b1 - 1] - *lambda;
 | |
|     i__1 = r1 - 1;
 | |
|     for (i__ = *b1; i__ <= i__1; ++i__) {
 | |
| 	dplus = d__[i__] + s;
 | |
| 	work[indlpl + i__] = ld[i__] / dplus;
 | |
| 	if (dplus < 0.f) {
 | |
| 	    ++neg1;
 | |
| 	}
 | |
| 	work[inds + i__] = s * work[indlpl + i__] * l[i__];
 | |
| 	s = work[inds + i__] - *lambda;
 | |
| /* L50: */
 | |
|     }
 | |
|     sawnan1 = sisnan_(&s);
 | |
|     if (sawnan1) {
 | |
| 	goto L60;
 | |
|     }
 | |
|     i__1 = r2 - 1;
 | |
|     for (i__ = r1; i__ <= i__1; ++i__) {
 | |
| 	dplus = d__[i__] + s;
 | |
| 	work[indlpl + i__] = ld[i__] / dplus;
 | |
| 	work[inds + i__] = s * work[indlpl + i__] * l[i__];
 | |
| 	s = work[inds + i__] - *lambda;
 | |
| /* L51: */
 | |
|     }
 | |
|     sawnan1 = sisnan_(&s);
 | |
| 
 | |
| L60:
 | |
|     if (sawnan1) {
 | |
| /*        Runs a slower version of the above loop if a NaN is detected */
 | |
| 	neg1 = 0;
 | |
| 	s = work[inds + *b1 - 1] - *lambda;
 | |
| 	i__1 = r1 - 1;
 | |
| 	for (i__ = *b1; i__ <= i__1; ++i__) {
 | |
| 	    dplus = d__[i__] + s;
 | |
| 	    if (abs(dplus) < *pivmin) {
 | |
| 		dplus = -(*pivmin);
 | |
| 	    }
 | |
| 	    work[indlpl + i__] = ld[i__] / dplus;
 | |
| 	    if (dplus < 0.f) {
 | |
| 		++neg1;
 | |
| 	    }
 | |
| 	    work[inds + i__] = s * work[indlpl + i__] * l[i__];
 | |
| 	    if (work[indlpl + i__] == 0.f) {
 | |
| 		work[inds + i__] = lld[i__];
 | |
| 	    }
 | |
| 	    s = work[inds + i__] - *lambda;
 | |
| /* L70: */
 | |
| 	}
 | |
| 	i__1 = r2 - 1;
 | |
| 	for (i__ = r1; i__ <= i__1; ++i__) {
 | |
| 	    dplus = d__[i__] + s;
 | |
| 	    if (abs(dplus) < *pivmin) {
 | |
| 		dplus = -(*pivmin);
 | |
| 	    }
 | |
| 	    work[indlpl + i__] = ld[i__] / dplus;
 | |
| 	    work[inds + i__] = s * work[indlpl + i__] * l[i__];
 | |
| 	    if (work[indlpl + i__] == 0.f) {
 | |
| 		work[inds + i__] = lld[i__];
 | |
| 	    }
 | |
| 	    s = work[inds + i__] - *lambda;
 | |
| /* L71: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute the progressive transform (using the differential form) */
 | |
| /*     until the index R1 */
 | |
| 
 | |
|     sawnan2 = FALSE_;
 | |
|     neg2 = 0;
 | |
|     work[indp + *bn - 1] = d__[*bn] - *lambda;
 | |
|     i__1 = r1;
 | |
|     for (i__ = *bn - 1; i__ >= i__1; --i__) {
 | |
| 	dminus = lld[i__] + work[indp + i__];
 | |
| 	tmp = d__[i__] / dminus;
 | |
| 	if (dminus < 0.f) {
 | |
| 	    ++neg2;
 | |
| 	}
 | |
| 	work[indumn + i__] = l[i__] * tmp;
 | |
| 	work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
 | |
| /* L80: */
 | |
|     }
 | |
|     tmp = work[indp + r1 - 1];
 | |
|     sawnan2 = sisnan_(&tmp);
 | |
|     if (sawnan2) {
 | |
| /*        Runs a slower version of the above loop if a NaN is detected */
 | |
| 	neg2 = 0;
 | |
| 	i__1 = r1;
 | |
| 	for (i__ = *bn - 1; i__ >= i__1; --i__) {
 | |
| 	    dminus = lld[i__] + work[indp + i__];
 | |
| 	    if (abs(dminus) < *pivmin) {
 | |
| 		dminus = -(*pivmin);
 | |
| 	    }
 | |
| 	    tmp = d__[i__] / dminus;
 | |
| 	    if (dminus < 0.f) {
 | |
| 		++neg2;
 | |
| 	    }
 | |
| 	    work[indumn + i__] = l[i__] * tmp;
 | |
| 	    work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
 | |
| 	    if (tmp == 0.f) {
 | |
| 		work[indp + i__ - 1] = d__[i__] - *lambda;
 | |
| 	    }
 | |
| /* L100: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Find the index (from R1 to R2) of the largest (in magnitude) */
 | |
| /*     diagonal element of the inverse */
 | |
| 
 | |
|     *mingma = work[inds + r1 - 1] + work[indp + r1 - 1];
 | |
|     if (*mingma < 0.f) {
 | |
| 	++neg1;
 | |
|     }
 | |
|     if (*wantnc) {
 | |
| 	*negcnt = neg1 + neg2;
 | |
|     } else {
 | |
| 	*negcnt = -1;
 | |
|     }
 | |
|     if (abs(*mingma) == 0.f) {
 | |
| 	*mingma = eps * work[inds + r1 - 1];
 | |
|     }
 | |
|     *r__ = r1;
 | |
|     i__1 = r2 - 1;
 | |
|     for (i__ = r1; i__ <= i__1; ++i__) {
 | |
| 	tmp = work[inds + i__] + work[indp + i__];
 | |
| 	if (tmp == 0.f) {
 | |
| 	    tmp = eps * work[inds + i__];
 | |
| 	}
 | |
| 	if (abs(tmp) <= abs(*mingma)) {
 | |
| 	    *mingma = tmp;
 | |
| 	    *r__ = i__ + 1;
 | |
| 	}
 | |
| /* L110: */
 | |
|     }
 | |
| 
 | |
| /*     Compute the FP vector: solve N^T v = e_r */
 | |
| 
 | |
|     isuppz[1] = *b1;
 | |
|     isuppz[2] = *bn;
 | |
|     z__[*r__] = 1.f;
 | |
|     *ztz = 1.f;
 | |
| 
 | |
| /*     Compute the FP vector upwards from R */
 | |
| 
 | |
|     if (! sawnan1 && ! sawnan2) {
 | |
| 	i__1 = *b1;
 | |
| 	for (i__ = *r__ - 1; i__ >= i__1; --i__) {
 | |
| 	    z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]);
 | |
| 	    if (((r__1 = z__[i__], abs(r__1)) + (r__2 = z__[i__ + 1], abs(
 | |
| 		    r__2))) * (r__3 = ld[i__], abs(r__3)) < *gaptol) {
 | |
| 		z__[i__] = 0.f;
 | |
| 		isuppz[1] = i__ + 1;
 | |
| 		goto L220;
 | |
| 	    }
 | |
| 	    *ztz += z__[i__] * z__[i__];
 | |
| /* L210: */
 | |
| 	}
 | |
| L220:
 | |
| 	;
 | |
|     } else {
 | |
| /*        Run slower loop if NaN occurred. */
 | |
| 	i__1 = *b1;
 | |
| 	for (i__ = *r__ - 1; i__ >= i__1; --i__) {
 | |
| 	    if (z__[i__ + 1] == 0.f) {
 | |
| 		z__[i__] = -(ld[i__ + 1] / ld[i__]) * z__[i__ + 2];
 | |
| 	    } else {
 | |
| 		z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]);
 | |
| 	    }
 | |
| 	    if (((r__1 = z__[i__], abs(r__1)) + (r__2 = z__[i__ + 1], abs(
 | |
| 		    r__2))) * (r__3 = ld[i__], abs(r__3)) < *gaptol) {
 | |
| 		z__[i__] = 0.f;
 | |
| 		isuppz[1] = i__ + 1;
 | |
| 		goto L240;
 | |
| 	    }
 | |
| 	    *ztz += z__[i__] * z__[i__];
 | |
| /* L230: */
 | |
| 	}
 | |
| L240:
 | |
| 	;
 | |
|     }
 | |
| /*     Compute the FP vector downwards from R in blocks of size BLKSIZ */
 | |
|     if (! sawnan1 && ! sawnan2) {
 | |
| 	i__1 = *bn - 1;
 | |
| 	for (i__ = *r__; i__ <= i__1; ++i__) {
 | |
| 	    z__[i__ + 1] = -(work[indumn + i__] * z__[i__]);
 | |
| 	    if (((r__1 = z__[i__], abs(r__1)) + (r__2 = z__[i__ + 1], abs(
 | |
| 		    r__2))) * (r__3 = ld[i__], abs(r__3)) < *gaptol) {
 | |
| 		z__[i__ + 1] = 0.f;
 | |
| 		isuppz[2] = i__;
 | |
| 		goto L260;
 | |
| 	    }
 | |
| 	    *ztz += z__[i__ + 1] * z__[i__ + 1];
 | |
| /* L250: */
 | |
| 	}
 | |
| L260:
 | |
| 	;
 | |
|     } else {
 | |
| /*        Run slower loop if NaN occurred. */
 | |
| 	i__1 = *bn - 1;
 | |
| 	for (i__ = *r__; i__ <= i__1; ++i__) {
 | |
| 	    if (z__[i__] == 0.f) {
 | |
| 		z__[i__ + 1] = -(ld[i__ - 1] / ld[i__]) * z__[i__ - 1];
 | |
| 	    } else {
 | |
| 		z__[i__ + 1] = -(work[indumn + i__] * z__[i__]);
 | |
| 	    }
 | |
| 	    if (((r__1 = z__[i__], abs(r__1)) + (r__2 = z__[i__ + 1], abs(
 | |
| 		    r__2))) * (r__3 = ld[i__], abs(r__3)) < *gaptol) {
 | |
| 		z__[i__ + 1] = 0.f;
 | |
| 		isuppz[2] = i__;
 | |
| 		goto L280;
 | |
| 	    }
 | |
| 	    *ztz += z__[i__ + 1] * z__[i__ + 1];
 | |
| /* L270: */
 | |
| 	}
 | |
| L280:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
| /*     Compute quantities for convergence test */
 | |
| 
 | |
|     tmp = 1.f / *ztz;
 | |
|     *nrminv = sqrt(tmp);
 | |
|     *resid = abs(*mingma) * *nrminv;
 | |
|     *rqcorr = *mingma * tmp;
 | |
| 
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLAR1V */
 | |
| 
 | |
| } /* slar1v_ */
 | |
| 
 |