229 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLASD5 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd5.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd5.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd5.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            I
 | |
| *       DOUBLE PRECISION   DSIGMA, RHO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This subroutine computes the square root of the I-th eigenvalue
 | |
| *> of a positive symmetric rank-one modification of a 2-by-2 diagonal
 | |
| *> matrix
 | |
| *>
 | |
| *>            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
 | |
| *>
 | |
| *> The diagonal entries in the array D are assumed to satisfy
 | |
| *>
 | |
| *>            0 <= D(i) < D(j)  for  i < j .
 | |
| *>
 | |
| *> We also assume RHO > 0 and that the Euclidean norm of the vector
 | |
| *> Z is one.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] I
 | |
| *> \verbatim
 | |
| *>          I is INTEGER
 | |
| *>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension ( 2 )
 | |
| *>         The original eigenvalues.  We assume 0 <= D(1) < D(2).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension ( 2 )
 | |
| *>         The components of the updating vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DELTA
 | |
| *> \verbatim
 | |
| *>          DELTA is DOUBLE PRECISION array, dimension ( 2 )
 | |
| *>         Contains (D(j) - sigma_I) in its  j-th component.
 | |
| *>         The vector DELTA contains the information necessary
 | |
| *>         to construct the eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RHO
 | |
| *> \verbatim
 | |
| *>          RHO is DOUBLE PRECISION
 | |
| *>         The scalar in the symmetric updating formula.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DSIGMA
 | |
| *> \verbatim
 | |
| *>          DSIGMA is DOUBLE PRECISION
 | |
| *>         The computed sigma_I, the I-th updated eigenvalue.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension ( 2 )
 | |
| *>         WORK contains (D(j) + sigma_I) in its  j-th component.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ren-Cang Li, Computer Science Division, University of California
 | |
| *>     at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            I
 | |
|       DOUBLE PRECISION   DSIGMA, RHO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
 | |
|      $                   THREE = 3.0D+0, FOUR = 4.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   B, C, DEL, DELSQ, TAU, W
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       DEL = D( 2 ) - D( 1 )
 | |
|       DELSQ = DEL*( D( 2 )+D( 1 ) )
 | |
|       IF( I.EQ.1 ) THEN
 | |
|          W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
 | |
|      $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
 | |
|          IF( W.GT.ZERO ) THEN
 | |
|             B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 | |
|             C = RHO*Z( 1 )*Z( 1 )*DELSQ
 | |
| *
 | |
| *           B > ZERO, always
 | |
| *
 | |
| *           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
 | |
| *
 | |
|             TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
 | |
| *
 | |
| *           The following TAU is DSIGMA - D( 1 )
 | |
| *
 | |
|             TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
 | |
|             DSIGMA = D( 1 ) + TAU
 | |
|             DELTA( 1 ) = -TAU
 | |
|             DELTA( 2 ) = DEL - TAU
 | |
|             WORK( 1 ) = TWO*D( 1 ) + TAU
 | |
|             WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
 | |
| *           DELTA( 1 ) = -Z( 1 ) / TAU
 | |
| *           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
 | |
|          ELSE
 | |
|             B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 | |
|             C = RHO*Z( 2 )*Z( 2 )*DELSQ
 | |
| *
 | |
| *           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
 | |
| *
 | |
|             IF( B.GT.ZERO ) THEN
 | |
|                TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
 | |
|             ELSE
 | |
|                TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
 | |
|             END IF
 | |
| *
 | |
| *           The following TAU is DSIGMA - D( 2 )
 | |
| *
 | |
|             TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
 | |
|             DSIGMA = D( 2 ) + TAU
 | |
|             DELTA( 1 ) = -( DEL+TAU )
 | |
|             DELTA( 2 ) = -TAU
 | |
|             WORK( 1 ) = D( 1 ) + TAU + D( 2 )
 | |
|             WORK( 2 ) = TWO*D( 2 ) + TAU
 | |
| *           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
 | |
| *           DELTA( 2 ) = -Z( 2 ) / TAU
 | |
|          END IF
 | |
| *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
 | |
| *        DELTA( 1 ) = DELTA( 1 ) / TEMP
 | |
| *        DELTA( 2 ) = DELTA( 2 ) / TEMP
 | |
|       ELSE
 | |
| *
 | |
| *        Now I=2
 | |
| *
 | |
|          B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 | |
|          C = RHO*Z( 2 )*Z( 2 )*DELSQ
 | |
| *
 | |
| *        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
 | |
| *
 | |
|          IF( B.GT.ZERO ) THEN
 | |
|             TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
 | |
|          ELSE
 | |
|             TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
 | |
|          END IF
 | |
| *
 | |
| *        The following TAU is DSIGMA - D( 2 )
 | |
| *
 | |
|          TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
 | |
|          DSIGMA = D( 2 ) + TAU
 | |
|          DELTA( 1 ) = -( DEL+TAU )
 | |
|          DELTA( 2 ) = -TAU
 | |
|          WORK( 1 ) = D( 1 ) + TAU + D( 2 )
 | |
|          WORK( 2 ) = TWO*D( 2 ) + TAU
 | |
| *        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
 | |
| *        DELTA( 2 ) = -Z( 2 ) / TAU
 | |
| *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
 | |
| *        DELTA( 1 ) = DELTA( 1 ) / TEMP
 | |
| *        DELTA( 2 ) = DELTA( 2 ) / TEMP
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLASD5
 | |
| *
 | |
|       END
 |