OpenBLAS/driver/others/blas_server.c

1153 lines
32 KiB
C

/*****************************************************************************
Copyright (c) 2011-2014, The OpenBLAS Project
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the OpenBLAS project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************************/
/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include "common.h"
#if defined(OS_LINUX) || defined(OS_NETBSD) || defined(OS_DARWIN) || defined(OS_ANDROID) || defined(OS_SUNOS) || defined(OS_FREEBSD) || defined(OS_OPENBSD) || defined(OS_DRAGONFLY) || defined(OS_HAIKU)
#include <dlfcn.h>
#include <errno.h>
#include <signal.h>
#include <sys/resource.h>
#include <sys/time.h>
#endif
#ifndef likely
#ifdef __GNUC__
#define likely(x) __builtin_expect(!!(x), 1)
#else
#define likely(x) (x)
#endif
#endif
#ifndef unlikely
#ifdef __GNUC__
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define unlikely(x) (x)
#endif
#endif
extern unsigned int openblas_thread_timeout(void);
#ifdef SMP_SERVER
#undef MONITOR
#undef TIMING
#undef TIMING_DEBUG
#undef NEED_STACKATTR
#define ATTRIBUTE_SIZE 128
/* This is a thread server model implementation. The threads are */
/* spawned at first access to blas library, and still remains until */
/* destruction routine is called. The number of threads are */
/* equal to "OMP_NUM_THREADS - 1" and thread only wakes up when */
/* jobs is queued. */
/* We need this global for checking if initialization is finished. */
int blas_server_avail __attribute__((aligned(ATTRIBUTE_SIZE))) = 0;
int blas_omp_threads_local = 1;
static void * blas_thread_buffer[MAX_CPU_NUMBER];
/* Local Variables */
#if defined(USE_PTHREAD_LOCK)
static pthread_mutex_t server_lock = PTHREAD_MUTEX_INITIALIZER;
#elif defined(USE_PTHREAD_SPINLOCK)
static pthread_spinlock_t server_lock = 0;
#else
static unsigned long server_lock = 0;
#endif
#define THREAD_STATUS_SLEEP 2
#define THREAD_STATUS_WAKEUP 4
static pthread_t blas_threads [MAX_CPU_NUMBER];
typedef struct {
blas_queue_t * volatile queue __attribute__((aligned(ATTRIBUTE_SIZE)));
#if defined(OS_LINUX) && !defined(NO_AFFINITY)
int node;
#endif
volatile long status;
pthread_mutex_t lock;
pthread_cond_t wakeup;
} thread_status_t;
#ifdef HAVE_C11
#define atomic_load_queue(p) __atomic_load_n(p, __ATOMIC_RELAXED)
#define atomic_store_queue(p, v) __atomic_store_n(p, v, __ATOMIC_RELAXED)
#else
#define atomic_load_queue(p) (blas_queue_t*)(*(volatile blas_queue_t**)(p))
#define atomic_store_queue(p, v) (*(volatile blas_queue_t* volatile*)(p) = (v))
#endif
static thread_status_t thread_status[MAX_CPU_NUMBER] __attribute__((aligned(ATTRIBUTE_SIZE)));
#ifndef THREAD_TIMEOUT
#define THREAD_TIMEOUT 28
#endif
static unsigned int thread_timeout = (1U << (THREAD_TIMEOUT));
#ifdef MONITOR
/* Monitor is a function to see thread's status for every second. */
/* Usually it turns off and it's for debugging. */
static pthread_t monitor_thread;
static int main_status[MAX_CPU_NUMBER];
#define MAIN_ENTER 0x01
#define MAIN_EXIT 0x02
#define MAIN_TRYLOCK 0x03
#define MAIN_LOCKSUCCESS 0x04
#define MAIN_QUEUING 0x05
#define MAIN_RECEIVING 0x06
#define MAIN_RUNNING1 0x07
#define MAIN_RUNNING2 0x08
#define MAIN_RUNNING3 0x09
#define MAIN_WAITING 0x0a
#define MAIN_SLEEPING 0x0b
#define MAIN_FINISH 0x0c
#define MAIN_DONE 0x0d
#endif
#define BLAS_QUEUE_FINISHED 3
#define BLAS_QUEUE_RUNNING 4
#ifdef TIMING
BLASLONG exit_time[MAX_CPU_NUMBER];
#endif
//Prototypes
static void exec_threads(int , blas_queue_t *, int);
static void adjust_thread_buffers();
static void legacy_exec(void *func, int mode, blas_arg_t *args, void *sb){
if (!(mode & BLAS_COMPLEX)){
#ifdef EXPRECISION
if ((mode & BLAS_PREC) == BLAS_XDOUBLE){
/* REAL / Extended Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble,
xdouble *, BLASLONG, xdouble *, BLASLONG,
xdouble *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((xdouble *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else
#endif
if ((mode & BLAS_PREC) == BLAS_DOUBLE){
/* REAL / Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double,
double *, BLASLONG, double *, BLASLONG,
double *, BLASLONG, void *) = (void (*)(BLASLONG, BLASLONG, BLASLONG, double, double *, BLASLONG,
double *, BLASLONG, double *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((double *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else if ((mode & BLAS_PREC) == BLAS_SINGLE){
/* REAL / Single */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *) = (void (*)
(BLASLONG, BLASLONG, BLASLONG, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((float *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
#ifdef BUILD_BFLOAT16
} else if ((mode & BLAS_PREC) == BLAS_BFLOAT16){
/* REAL / BFLOAT16 */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, bfloat16,
bfloat16 *, BLASLONG, bfloat16 *, BLASLONG,
bfloat16 *, BLASLONG, void *) = (void (*)(BLASLONG, BLASLONG, BLASLONG, bfloat16,
bfloat16 *, BLASLONG, bfloat16 *, BLASLONG,
bfloat16 *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((bfloat16 *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else if ((mode & BLAS_PREC) == BLAS_STOBF16){
/* REAL / BLAS_STOBF16 */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float,
float *, BLASLONG, bfloat16 *, BLASLONG,
float *, BLASLONG, void *) = (void (*)(BLASLONG, BLASLONG, BLASLONG, float,
float *, BLASLONG, bfloat16 *, BLASLONG,
float *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((float *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else if ((mode & BLAS_PREC) == BLAS_DTOBF16){
/* REAL / BLAS_DTOBF16 */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double,
double *, BLASLONG, bfloat16 *, BLASLONG,
double *, BLASLONG, void *) = (void (*)(BLASLONG, BLASLONG, BLASLONG, double,
double *, BLASLONG, bfloat16 *, BLASLONG,
double *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((double *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
#endif
} else {
/* REAL / Other types in future */
}
} else {
#ifdef EXPRECISION
if ((mode & BLAS_PREC) == BLAS_XDOUBLE){
/* COMPLEX / Extended Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble, xdouble,
xdouble *, BLASLONG, xdouble *, BLASLONG,
xdouble *, BLASLONG, void *) = (void (*)(BLASLONG, BLASLONG, BLASLONG, xdouble, xdouble,
xdouble *, BLASLONG, xdouble *, BLASLONG,
xdouble *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((xdouble *)args -> alpha)[0],
((xdouble *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else
#endif
if ((mode & BLAS_PREC) == BLAS_DOUBLE) {
/* COMPLEX / Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double, double,
double *, BLASLONG, double *, BLASLONG,
double *, BLASLONG, void *) = (void (*)(BLASLONG, BLASLONG, BLASLONG, double, double,
double *, BLASLONG, double *, BLASLONG,
double *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((double *)args -> alpha)[0],
((double *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else if ((mode & BLAS_PREC) == BLAS_SINGLE) {
/* COMPLEX / Single */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *) = (void (*)(BLASLONG, BLASLONG, BLASLONG, float, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *)) func;
afunc(args -> m, args -> n, args -> k,
((float *)args -> alpha)[0],
((float *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else {
/* COMPLEX / Other types in future */
}
}
}
#if defined(OS_LINUX) && !defined(NO_AFFINITY)
int gotoblas_set_affinity(int);
int gotoblas_set_affinity2(int);
int get_node(void);
#endif
static int increased_threads = 0;
#ifdef OS_LINUX
extern int openblas_get_num_threads(void);
int openblas_setaffinity(int thread_idx, size_t cpusetsize, cpu_set_t* cpu_set) {
const int active_threads = openblas_get_num_threads();
if (thread_idx < 0 || thread_idx >= active_threads) {
errno = EINVAL;
return -1;
}
pthread_t thread = (thread_idx == active_threads - 1)
? pthread_self()
: blas_threads[thread_idx];
return pthread_setaffinity_np(thread, cpusetsize, cpu_set);
}
int openblas_getaffinity(int thread_idx, size_t cpusetsize, cpu_set_t* cpu_set) {
const int active_threads = openblas_get_num_threads();
if (thread_idx < 0 || thread_idx >= active_threads) {
errno = EINVAL;
return -1;
}
pthread_t thread = (thread_idx == active_threads - 1)
? pthread_self()
: blas_threads[thread_idx];
return pthread_getaffinity_np(thread, cpusetsize, cpu_set);
}
#endif
static void* blas_thread_server(void *arg){
/* Thread identifier */
BLASLONG cpu = (BLASLONG)arg;
unsigned int last_tick;
blas_queue_t *queue;
blas_queue_t *tscq;
#ifdef TIMING_DEBUG
unsigned long start, stop;
#endif
#if defined(OS_LINUX) && !defined(NO_AFFINITY)
if (!increased_threads)
thread_status[cpu].node = gotoblas_set_affinity(cpu + 1);
else
thread_status[cpu].node = gotoblas_set_affinity(-1);
#endif
#ifdef MONITOR
main_status[cpu] = MAIN_ENTER;
#endif
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Thread has just been spawned!\n", cpu);
#endif
while (1){
#ifdef MONITOR
main_status[cpu] = MAIN_QUEUING;
#endif
#ifdef TIMING
exit_time[cpu] = rpcc();
#endif
last_tick = (unsigned int)rpcc();
tscq = atomic_load_queue(&thread_status[cpu].queue);
while(!tscq) {
YIELDING;
if ((unsigned int)rpcc() - last_tick > thread_timeout) {
if (!atomic_load_queue(&thread_status[cpu].queue)) {
pthread_mutex_lock (&thread_status[cpu].lock);
thread_status[cpu].status = THREAD_STATUS_SLEEP;
while (thread_status[cpu].status == THREAD_STATUS_SLEEP &&
!atomic_load_queue(&thread_status[cpu].queue)) {
#ifdef MONITOR
main_status[cpu] = MAIN_SLEEPING;
#endif
pthread_cond_wait(&thread_status[cpu].wakeup, &thread_status[cpu].lock);
}
pthread_mutex_unlock(&thread_status[cpu].lock);
}
last_tick = (unsigned int)rpcc();
}
tscq = atomic_load_queue(&thread_status[cpu].queue);
}
queue = atomic_load_queue(&thread_status[cpu].queue);
MB;
if ((long)queue == -1) break;
#ifdef MONITOR
main_status[cpu] = MAIN_RECEIVING;
#endif
#ifdef TIMING_DEBUG
start = rpcc();
#endif
if(queue) {
exec_threads(cpu, queue, 0);
}
#ifdef MONITOR
main_status[cpu] = MAIN_DONE;
#endif
#ifdef TIMING_DEBUG
stop = rpcc();
fprintf(STDERR, "Thread[%ld] : %16lu %16lu (%8lu cycles)\n", cpu + 1,
start, stop,
stop - start);
#endif
}
/* Shutdown procedure */
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Shutdown!\n", cpu);
#endif
//pthread_exit(NULL);
return NULL;
}
#ifdef MONITOR
static BLASLONG num_suspend = 0;
static int blas_monitor(void *arg){
int i;
while(1){
for (i = 0; i < blas_num_threads - 1; i++){
switch (main_status[i]) {
case MAIN_ENTER :
fprintf(STDERR, "THREAD[%2d] : Entering.\n", i);
break;
case MAIN_EXIT :
fprintf(STDERR, "THREAD[%2d] : Exiting.\n", i);
break;
case MAIN_TRYLOCK :
fprintf(STDERR, "THREAD[%2d] : Trying lock operation.\n", i);
break;
case MAIN_QUEUING :
fprintf(STDERR, "THREAD[%2d] : Queuing.\n", i);
break;
case MAIN_RECEIVING :
fprintf(STDERR, "THREAD[%2d] : Receiving.\n", i);
break;
case MAIN_RUNNING1 :
fprintf(STDERR, "THREAD[%2d] : Running1.\n", i);
break;
case MAIN_RUNNING2 :
fprintf(STDERR, "THREAD[%2d] : Running2.\n", i);
break;
case MAIN_RUNNING3 :
fprintf(STDERR, "THREAD[%2d] : Running3.\n", i);
break;
case MAIN_WAITING :
fprintf(STDERR, "THREAD[%2d] : Waiting.\n", i);
break;
case MAIN_SLEEPING :
fprintf(STDERR, "THREAD[%2d] : Sleeping.\n", i);
break;
case MAIN_FINISH :
fprintf(STDERR, "THREAD[%2d] : Finishing.\n", i);
break;
case MAIN_DONE :
fprintf(STDERR, "THREAD[%2d] : Job is done.\n", i);
break;
}
fprintf(stderr, "Total number of suspended ... %ld\n", num_suspend);
}
sleep(1);
}
return 0;
}
#endif
/* Initializing routine */
int blas_thread_init(void){
BLASLONG i;
int ret;
int thread_timeout_env;
#ifdef NEED_STACKATTR
pthread_attr_t attr;
#endif
if (blas_server_avail) return 0;
#ifdef NEED_STACKATTR
pthread_attr_init(&attr);
pthread_attr_setguardsize(&attr, 0x1000U);
pthread_attr_setstacksize( &attr, 0x1000U);
#endif
LOCK_COMMAND(&server_lock);
// Adjust thread buffers
adjust_thread_buffers();
if (!blas_server_avail){
thread_timeout_env=openblas_thread_timeout();
if (thread_timeout_env>0) {
if (thread_timeout_env < 4) thread_timeout_env = 4;
if (thread_timeout_env > 30) thread_timeout_env = 30;
thread_timeout = (1 << thread_timeout_env);
}
for(i = 0; i < blas_num_threads - 1; i++){
atomic_store_queue(&thread_status[i].queue, (blas_queue_t *)0);
thread_status[i].status = THREAD_STATUS_WAKEUP;
pthread_mutex_init(&thread_status[i].lock, NULL);
pthread_cond_init (&thread_status[i].wakeup, NULL);
#ifdef NEED_STACKATTR
ret=pthread_create(&blas_threads[i], &attr,
&blas_thread_server, (void *)i);
#else
ret=pthread_create(&blas_threads[i], NULL,
&blas_thread_server, (void *)i);
#endif
if(ret!=0){
struct rlimit rlim;
const char *msg = strerror(ret);
fprintf(STDERR, "OpenBLAS blas_thread_init: pthread_create failed for thread %ld of %d: %s\n", i+1,blas_num_threads,msg);
#ifdef RLIMIT_NPROC
if(0 == getrlimit(RLIMIT_NPROC, &rlim)) {
fprintf(STDERR, "OpenBLAS blas_thread_init: RLIMIT_NPROC "
"%ld current, %ld max\n", (long)(rlim.rlim_cur), (long)(rlim.rlim_max));
}
#endif
if(0 != raise(SIGINT)) {
fprintf(STDERR, "OpenBLAS blas_thread_init: calling exit(3)\n");
exit(EXIT_FAILURE);
}
}
}
#ifdef MONITOR
pthread_create(&monitor_thread, NULL,
(void *)&blas_monitor, (void *)NULL);
#endif
blas_server_avail = 1;
}
UNLOCK_COMMAND(&server_lock);
return 0;
}
/*
User can call one of two routines.
exec_blas_async ... immediately returns after jobs are queued.
exec_blas ... returns after jobs are finished.
*/
static BLASULONG exec_queue_lock = 0;
int exec_blas_async(BLASLONG pos, blas_queue_t *queue){
#ifdef SMP_SERVER
// Handle lazy re-init of the thread-pool after a POSIX fork
if (unlikely(blas_server_avail == 0)) blas_thread_init();
#endif
BLASLONG i = 0;
blas_queue_t *current = queue;
blas_queue_t *tsiq,*tspq;
#if defined(OS_LINUX) && !defined(NO_AFFINITY) && !defined(PARAMTEST)
int node = get_node();
int nodes = get_num_nodes();
#endif
#ifdef SMP_DEBUG
int exec_count = 0;
fprintf(STDERR, "Exec_blas_async is called. Position = %d\n", pos);
#endif
blas_lock(&exec_queue_lock);
while (queue) {
queue -> position = pos;
#ifdef CONSISTENT_FPCSR
#ifdef __aarch64__
__asm__ __volatile__ ("mrs %0, fpcr" : "=r" (queue -> sse_mode));
#else
__asm__ __volatile__ ("fnstcw %0" : "=m" (queue -> x87_mode));
__asm__ __volatile__ ("stmxcsr %0" : "=m" (queue -> sse_mode));
#endif
#endif
#if defined(OS_LINUX) && !defined(NO_AFFINITY) && !defined(PARAMTEST)
/* Node Mapping Mode */
if (queue -> mode & BLAS_NODE) {
do {
while((thread_status[i].node != node || atomic_load_queue(&thread_status[i].queue)) && (i < blas_num_threads - 1)) i ++;
if (i < blas_num_threads - 1) break;
i ++;
if (i >= blas_num_threads - 1) {
i = 0;
node ++;
if (node >= nodes) node = 0;
}
} while (1);
} else {
tsiq = atomic_load_queue(&thread_status[i].queue);
while(tsiq) {
i ++;
if (i >= blas_num_threads - 1) i = 0;
tsiq = atomic_load_queue(&thread_status[i].queue);
}
}
#else
tsiq = atomic_load_queue(&thread_status[i].queue);
while(tsiq) {
i ++;
if (i >= blas_num_threads - 1) i = 0;
tsiq = atomic_load_queue(&thread_status[i].queue);
}
#endif
queue -> assigned = i;
MB;
atomic_store_queue(&thread_status[i].queue, queue);
queue = queue -> next;
pos ++;
#ifdef SMP_DEBUG
exec_count ++;
#endif
}
blas_unlock(&exec_queue_lock);
#ifdef SMP_DEBUG
fprintf(STDERR, "Done(Number of threads = %2ld).\n", exec_count);
#endif
while (current) {
pos = current -> assigned;
tspq = atomic_load_queue(&thread_status[pos].queue);
if ((BLASULONG)tspq > 1) {
pthread_mutex_lock (&thread_status[pos].lock);
if (thread_status[pos].status == THREAD_STATUS_SLEEP) {
#ifdef MONITOR
num_suspend ++;
#endif
if (thread_status[pos].status == THREAD_STATUS_SLEEP) {
thread_status[pos].status = THREAD_STATUS_WAKEUP;
pthread_cond_signal(&thread_status[pos].wakeup);
}
}
pthread_mutex_unlock(&thread_status[pos].lock);
}
current = current -> next;
}
return 0;
}
int exec_blas_async_wait(BLASLONG num, blas_queue_t *queue){
blas_queue_t * tsqq;
while ((num > 0) && queue) {
tsqq = atomic_load_queue(&thread_status[queue->assigned].queue);
while(tsqq) {
YIELDING;
tsqq = atomic_load_queue(&thread_status[queue->assigned].queue);
};
queue = queue -> next;
num --;
}
MB;
#ifdef SMP_DEBUG
fprintf(STDERR, "Done.\n\n");
#endif
return 0;
}
/* Execute Threads */
int exec_blas(BLASLONG num, blas_queue_t *queue){
#ifdef SMP_SERVER
// Handle lazy re-init of the thread-pool after a POSIX fork
if (unlikely(blas_server_avail == 0)) blas_thread_init();
#endif
int (*routine)(blas_arg_t *, void *, void *, double *, double *, BLASLONG);
#ifdef TIMING_DEBUG
BLASULONG start, stop;
#endif
if ((num <= 0) || (queue == NULL)) return 0;
#ifdef SMP_DEBUG
fprintf(STDERR, "Exec_blas is called. Number of executing threads : %ld\n", num);
#endif
//Redirect to caller's callback routine
if (openblas_threads_callback_) {
int buf_index = 0, i = 0;
#ifndef USE_SIMPLE_THREADED_LEVEL3
for (i = 0; i < num; i ++)
queue[i].position = i;
#endif
openblas_threads_callback_(1, (openblas_dojob_callback) exec_threads, num, sizeof(blas_queue_t), (void*) queue, buf_index);
return 0;
}
#ifdef __ELF__
if (omp_in_parallel && (num > 1)) {
if (omp_in_parallel() > 0) {
fprintf(stderr,
"OpenBLAS Warning : Detect OpenMP Loop and this application may hang. "
"Please rebuild the library with USE_OPENMP=1 option.\n");
}
}
#endif
if ((num > 1) && queue -> next) exec_blas_async(1, queue -> next);
#ifdef TIMING_DEBUG
start = rpcc();
fprintf(STDERR, "\n");
#endif
routine = (int (*)(blas_arg_t *, void *, void *, double *, double *, BLASLONG))queue -> routine;
if (queue -> mode & BLAS_LEGACY) {
legacy_exec(routine, queue -> mode, queue -> args, queue -> sb);
} else
if (queue -> mode & BLAS_PTHREAD) {
void (*pthreadcompat)(void *) = (void (*)(void*))queue -> routine;
(pthreadcompat)(queue -> args);
} else
(routine)(queue -> args, queue -> range_m, queue -> range_n,
queue -> sa, queue -> sb, 0);
#ifdef TIMING_DEBUG
stop = rpcc();
#endif
if ((num > 1) && queue -> next) {
exec_blas_async_wait(num - 1, queue -> next);
// arm: make sure results from other threads are visible
MB;
}
#ifdef TIMING_DEBUG
fprintf(STDERR, "Thread[0] : %16lu %16lu (%8lu cycles)\n",
start, stop,
stop - start);
#endif
return 0;
}
void goto_set_num_threads(int num_threads) {
long i;
#ifdef SMP_SERVER
// Handle lazy re-init of the thread-pool after a POSIX fork
if (unlikely(blas_server_avail == 0)) blas_thread_init();
#endif
if (num_threads < 1) num_threads = blas_num_threads;
#ifndef NO_AFFINITY
if (num_threads == 1) {
if (blas_cpu_number == 1){
//OpenBLAS is already single thread.
return;
}else{
//From multi-threads to single thread
//Restore the original affinity mask
gotoblas_set_affinity(-1);
}
}
#endif
if (num_threads > MAX_CPU_NUMBER) num_threads = MAX_CPU_NUMBER;
if (num_threads > blas_num_threads) {
LOCK_COMMAND(&server_lock);
increased_threads = 1;
for(i = (blas_num_threads > 0) ? blas_num_threads - 1 : 0; i < num_threads - 1; i++){
atomic_store_queue(&thread_status[i].queue, (blas_queue_t *)0);
thread_status[i].status = THREAD_STATUS_WAKEUP;
pthread_mutex_init(&thread_status[i].lock, NULL);
pthread_cond_init (&thread_status[i].wakeup, NULL);
#ifdef NEED_STACKATTR
pthread_create(&blas_threads[i], &attr,
&blas_thread_server, (void *)i);
#else
pthread_create(&blas_threads[i], NULL,
&blas_thread_server, (void *)i);
#endif
}
blas_num_threads = num_threads;
UNLOCK_COMMAND(&server_lock);
}
#ifndef NO_AFFINITY
if(blas_cpu_number == 1 && num_threads > 1){
//Restore the thread 0 affinity.
gotoblas_set_affinity(0);
}
#endif
blas_cpu_number = num_threads;
#if defined(ARCH_MIPS64)
#ifndef DYNAMIC_ARCH
//set parameters for different number of threads.
blas_set_parameter();
#endif
#endif
}
void openblas_set_num_threads(int num_threads) {
goto_set_num_threads(num_threads);
}
/* Compatible function with pthread_create / join */
int gotoblas_pthread(int numthreads, void *function, void *args, int stride) {
blas_queue_t queue[MAX_CPU_NUMBER];
int i;
if (numthreads <= 0) return 0;
#ifdef SMP
if (blas_cpu_number == 0) blas_get_cpu_number();
#ifdef SMP_SERVER
if (blas_server_avail == 0) blas_thread_init();
#endif
#endif
for (i = 0; i < numthreads; i ++) {
queue[i].mode = BLAS_PTHREAD;
queue[i].routine = function;
queue[i].args = args;
queue[i].range_m = NULL;
queue[i].range_n = NULL;
queue[i].sa = args;
queue[i].sb = args;
queue[i].next = &queue[i + 1];
args += stride;
}
queue[numthreads - 1].next = NULL;
exec_blas(numthreads, queue);
return 0;
}
/* Shutdown procedure, but user don't have to call this routine. The */
/* kernel automatically kill threads. */
int BLASFUNC(blas_thread_shutdown)(void){
int i;
LOCK_COMMAND(&server_lock);
//Free buffers allocated for threads
for(i=0; i<MAX_CPU_NUMBER; i++){
if(blas_thread_buffer[i]!=NULL){
blas_memory_free(blas_thread_buffer[i]);
blas_thread_buffer[i]=NULL;
}
}
if (blas_server_avail) {
for (i = 0; i < blas_num_threads - 1; i++) {
pthread_mutex_lock (&thread_status[i].lock);
atomic_store_queue(&thread_status[i].queue, (blas_queue_t *)-1);
thread_status[i].status = THREAD_STATUS_WAKEUP;
pthread_cond_signal (&thread_status[i].wakeup);
pthread_mutex_unlock(&thread_status[i].lock);
}
for(i = 0; i < blas_num_threads - 1; i++){
pthread_join(blas_threads[i], NULL);
}
for(i = 0; i < blas_num_threads - 1; i++){
pthread_mutex_destroy(&thread_status[i].lock);
pthread_cond_destroy (&thread_status[i].wakeup);
}
#ifdef NEED_STACKATTR
pthread_attr_destroy(&attr);
#endif
blas_server_avail = 0;
}
UNLOCK_COMMAND(&server_lock);
return 0;
}
static void adjust_thread_buffers() {
int i=0;
//adjust buffer for each thread
for(i=0; i < blas_cpu_number; i++){
if(blas_thread_buffer[i] == NULL){
blas_thread_buffer[i] = blas_memory_alloc(2);
}
}
for(; i < MAX_CPU_NUMBER; i++){
if(blas_thread_buffer[i] != NULL){
blas_memory_free(blas_thread_buffer[i]);
blas_thread_buffer[i] = NULL;
}
}
}
static void exec_threads(int cpu, blas_queue_t *queue, int buf_index) {
int (*routine)(blas_arg_t *, void *, void *, void *, void *, BLASLONG) = (int (*)(blas_arg_t *, void *, void *, void *, void *, BLASLONG))queue -> routine;
atomic_store_queue(&thread_status[cpu].queue, (blas_queue_t *)1);
void *buffer = blas_thread_buffer[cpu];
void *sa = queue -> sa;
void *sb = queue -> sb;
#ifdef SMP_DEBUG
if (queue -> args) {
fprintf(STDERR, "Server[%2ld] Calculation started. Mode = 0x%03x M = %3ld N=%3ld K=%3ld\n",
cpu, queue->mode, queue-> args ->m, queue->args->n, queue->args->k);
}
#endif
#ifdef CONSISTENT_FPCSR
#ifdef __aarch64__
__asm__ __volatile__ ("msr fpcr, %0" : : "r" (queue -> sse_mode));
#else
__asm__ __volatile__ ("ldmxcsr %0" : : "m" (queue -> sse_mode));
__asm__ __volatile__ ("fldcw %0" : : "m" (queue -> x87_mode));
#endif
#endif
#ifdef MONITOR
main_status[cpu] = MAIN_RUNNING1;
#endif
if (sa == NULL) sa = (void *)((BLASLONG)buffer + GEMM_OFFSET_A);
if (sb == NULL) {
if (!(queue -> mode & BLAS_COMPLEX)){
#ifdef EXPRECISION
if ((queue -> mode & BLAS_PREC) == BLAS_XDOUBLE){
sb = (void *)(((BLASLONG)sa + ((QGEMM_P * QGEMM_Q * sizeof(xdouble)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else
#endif
if ((queue -> mode & BLAS_PREC) == BLAS_DOUBLE) {
#ifdef BUILD_DOUBLE
sb = (void *)(((BLASLONG)sa + ((DGEMM_P * DGEMM_Q * sizeof(double)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
#endif
} else if ((queue -> mode & BLAS_PREC) == BLAS_SINGLE) {
#ifdef BUILD_SINGLE
sb = (void *)(((BLASLONG)sa + ((SGEMM_P * SGEMM_Q * sizeof(float)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
#endif
} else {
/* Other types in future */
}
} else {
#ifdef EXPRECISION
if ((queue -> mode & BLAS_PREC) == BLAS_XDOUBLE){
sb = (void *)(((BLASLONG)sa + ((XGEMM_P * XGEMM_Q * 2 * sizeof(xdouble)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else
#endif
if ((queue -> mode & BLAS_PREC) == BLAS_DOUBLE){
#ifdef BUILD_COMPLEX16
sb = (void *)(((BLASLONG)sa + ((ZGEMM_P * ZGEMM_Q * 2 * sizeof(double)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
#endif
} else if ((queue -> mode & BLAS_PREC) == BLAS_SINGLE) {
#ifdef BUILD_COMPLEX
sb = (void *)(((BLASLONG)sa + ((CGEMM_P * CGEMM_Q * 2 * sizeof(float)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
#endif
} else {
/* Other types in future */
}
}
queue->sb=sb;
}
#ifdef MONITOR
main_status[cpu] = MAIN_RUNNING2;
#endif
if (queue -> mode & BLAS_LEGACY) {
legacy_exec(routine, queue -> mode, queue -> args, sb);
} else
if (queue -> mode & BLAS_PTHREAD) {
void (*pthreadcompat)(void *) = (void(*)(void*))queue -> routine;
(pthreadcompat)(queue -> args);
} else
(routine)(queue -> args, queue -> range_m, queue -> range_n, sa, sb, queue -> position);
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Calculation finished!\n", cpu);
#endif
#ifdef MONITOR
main_status[cpu] = MAIN_FINISH;
#endif
// arm: make sure all results are written out _before_
// thread is marked as done and other threads use them
MB;
atomic_store_queue(&thread_status[cpu].queue, (blas_queue_t *)0);
}
#endif