291 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
!> \brief \b ZLARTG generates a plane rotation with real cosine and complex sine.
 | 
						|
!
 | 
						|
!  =========== DOCUMENTATION ===========
 | 
						|
!
 | 
						|
! Online html documentation available at
 | 
						|
!            http://www.netlib.org/lapack/explore-html/
 | 
						|
!
 | 
						|
!  Definition:
 | 
						|
!  ===========
 | 
						|
!
 | 
						|
!       SUBROUTINE ZLARTG( F, G, C, S, R )
 | 
						|
!
 | 
						|
!       .. Scalar Arguments ..
 | 
						|
!       REAL(wp)              C
 | 
						|
!       COMPLEX(wp)           F, G, R, S
 | 
						|
!       ..
 | 
						|
!
 | 
						|
!> \par Purpose:
 | 
						|
!  =============
 | 
						|
!>
 | 
						|
!> \verbatim
 | 
						|
!>
 | 
						|
!> ZLARTG generates a plane rotation so that
 | 
						|
!>
 | 
						|
!>    [  C         S  ] . [ F ]  =  [ R ]
 | 
						|
!>    [ -conjg(S)  C  ]   [ G ]     [ 0 ]
 | 
						|
!>
 | 
						|
!> where C is real and C**2 + |S|**2 = 1.
 | 
						|
!>
 | 
						|
!> The mathematical formulas used for C and S are
 | 
						|
!>
 | 
						|
!>    sgn(x) = {  x / |x|,   x != 0
 | 
						|
!>             {  1,         x  = 0
 | 
						|
!>
 | 
						|
!>    R = sgn(F) * sqrt(|F|**2 + |G|**2)
 | 
						|
!>
 | 
						|
!>    C = |F| / sqrt(|F|**2 + |G|**2)
 | 
						|
!>
 | 
						|
!>    S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
 | 
						|
!>
 | 
						|
!> Special conditions:
 | 
						|
!>    If G=0, then C=1 and S=0.
 | 
						|
!>    If F=0, then C=0 and S is chosen so that R is real.
 | 
						|
!>
 | 
						|
!> When F and G are real, the formulas simplify to C = F/R and
 | 
						|
!> S = G/R, and the returned values of C, S, and R should be
 | 
						|
!> identical to those returned by DLARTG.
 | 
						|
!>
 | 
						|
!> The algorithm used to compute these quantities incorporates scaling
 | 
						|
!> to avoid overflow or underflow in computing the square root of the
 | 
						|
!> sum of squares.
 | 
						|
!>
 | 
						|
!> This is the same routine ZROTG fom BLAS1, except that
 | 
						|
!> F and G are unchanged on return.
 | 
						|
!>
 | 
						|
!> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
 | 
						|
!> \endverbatim
 | 
						|
!
 | 
						|
!  Arguments:
 | 
						|
!  ==========
 | 
						|
!
 | 
						|
!> \param[in] F
 | 
						|
!> \verbatim
 | 
						|
!>          F is COMPLEX(wp)
 | 
						|
!>          The first component of vector to be rotated.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[in] G
 | 
						|
!> \verbatim
 | 
						|
!>          G is COMPLEX(wp)
 | 
						|
!>          The second component of vector to be rotated.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[out] C
 | 
						|
!> \verbatim
 | 
						|
!>          C is REAL(wp)
 | 
						|
!>          The cosine of the rotation.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[out] S
 | 
						|
!> \verbatim
 | 
						|
!>          S is COMPLEX(wp)
 | 
						|
!>          The sine of the rotation.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[out] R
 | 
						|
!> \verbatim
 | 
						|
!>          R is COMPLEX(wp)
 | 
						|
!>          The nonzero component of the rotated vector.
 | 
						|
!> \endverbatim
 | 
						|
!
 | 
						|
!  Authors:
 | 
						|
!  ========
 | 
						|
!
 | 
						|
!> \author Weslley Pereira, University of Colorado Denver, USA
 | 
						|
!
 | 
						|
!> \date December 2021
 | 
						|
!
 | 
						|
!> \ingroup OTHERauxiliary
 | 
						|
!
 | 
						|
!> \par Further Details:
 | 
						|
!  =====================
 | 
						|
!>
 | 
						|
!> \verbatim
 | 
						|
!>
 | 
						|
!> Based on the algorithm from
 | 
						|
!>
 | 
						|
!>  Anderson E. (2017)
 | 
						|
!>  Algorithm 978: Safe Scaling in the Level 1 BLAS
 | 
						|
!>  ACM Trans Math Softw 44:1--28
 | 
						|
!>  https://doi.org/10.1145/3061665
 | 
						|
!>
 | 
						|
!> \endverbatim
 | 
						|
!
 | 
						|
subroutine ZLARTG( f, g, c, s, r )
 | 
						|
   use LA_CONSTANTS, &
 | 
						|
   only: wp=>dp, zero=>dzero, one=>done, two=>dtwo, czero=>zzero, &
 | 
						|
         safmin=>dsafmin, safmax=>dsafmax
 | 
						|
!
 | 
						|
!  -- LAPACK auxiliary routine --
 | 
						|
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
!     February 2021
 | 
						|
!
 | 
						|
!  .. Scalar Arguments ..
 | 
						|
   real(wp)           c
 | 
						|
   complex(wp)        f, g, r, s
 | 
						|
!  ..
 | 
						|
!  .. Local Scalars ..
 | 
						|
   real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmin, rtmax
 | 
						|
   complex(wp) :: fs, gs, t
 | 
						|
!  ..
 | 
						|
!  .. Intrinsic Functions ..
 | 
						|
   intrinsic :: abs, aimag, conjg, max, min, real, sqrt
 | 
						|
!  ..
 | 
						|
!  .. Statement Functions ..
 | 
						|
   real(wp) :: ABSSQ
 | 
						|
!  ..
 | 
						|
!  .. Statement Function definitions ..
 | 
						|
   ABSSQ( t ) = real( t )**2 + aimag( t )**2
 | 
						|
!  ..
 | 
						|
!  .. Constants ..
 | 
						|
   rtmin = sqrt( safmin )
 | 
						|
!  ..
 | 
						|
!  .. Executable Statements ..
 | 
						|
!
 | 
						|
   if( g == czero ) then
 | 
						|
      c = one
 | 
						|
      s = czero
 | 
						|
      r = f
 | 
						|
   else if( f == czero ) then
 | 
						|
      c = zero
 | 
						|
      if( real(g) == zero ) then
 | 
						|
         r = abs(aimag(g))
 | 
						|
         s = conjg( g ) / r
 | 
						|
      elseif( aimag(g) == zero ) then
 | 
						|
         r = abs(real(g))
 | 
						|
         s = conjg( g ) / r
 | 
						|
      else
 | 
						|
         g1 = max( abs(real(g)), abs(aimag(g)) )
 | 
						|
         rtmax = sqrt( safmax/2 )
 | 
						|
         if( g1 > rtmin .and. g1 < rtmax ) then
 | 
						|
!
 | 
						|
!        Use unscaled algorithm
 | 
						|
!
 | 
						|
!           The following two lines can be replaced by `d = abs( g )`.
 | 
						|
!           This algorithm do not use the intrinsic complex abs.
 | 
						|
            g2 = ABSSQ( g )
 | 
						|
            d = sqrt( g2 )
 | 
						|
            s = conjg( g ) / d
 | 
						|
            r = d
 | 
						|
         else
 | 
						|
!
 | 
						|
!        Use scaled algorithm
 | 
						|
!
 | 
						|
            u = min( safmax, max( safmin, g1 ) )
 | 
						|
            gs = g / u
 | 
						|
!           The following two lines can be replaced by `d = abs( gs )`.
 | 
						|
!           This algorithm do not use the intrinsic complex abs.
 | 
						|
            g2 = ABSSQ( gs )
 | 
						|
            d = sqrt( g2 )
 | 
						|
            s = conjg( gs ) / d
 | 
						|
            r = d*u
 | 
						|
         end if
 | 
						|
      end if
 | 
						|
   else
 | 
						|
      f1 = max( abs(real(f)), abs(aimag(f)) )
 | 
						|
      g1 = max( abs(real(g)), abs(aimag(g)) )
 | 
						|
      rtmax = sqrt( safmax/4 )
 | 
						|
      if( f1 > rtmin .and. f1 < rtmax .and. &
 | 
						|
          g1 > rtmin .and. g1 < rtmax ) then
 | 
						|
!
 | 
						|
!        Use unscaled algorithm
 | 
						|
!
 | 
						|
         f2 = ABSSQ( f )
 | 
						|
         g2 = ABSSQ( g )
 | 
						|
         h2 = f2 + g2
 | 
						|
         ! safmin <= f2 <= h2 <= safmax 
 | 
						|
         if( f2 >= h2 * safmin ) then
 | 
						|
            ! safmin <= f2/h2 <= 1, and h2/f2 is finite
 | 
						|
            c = sqrt( f2 / h2 )
 | 
						|
            r = f / c
 | 
						|
            rtmax = rtmax * 2
 | 
						|
            if( f2 > rtmin .and. h2 < rtmax ) then
 | 
						|
               ! safmin <= sqrt( f2*h2 ) <= safmax
 | 
						|
               s = conjg( g ) * ( f / sqrt( f2*h2 ) )
 | 
						|
            else
 | 
						|
               s = conjg( g ) * ( r / h2 )
 | 
						|
            end if
 | 
						|
         else
 | 
						|
            ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
 | 
						|
            ! Moreover,
 | 
						|
            !  safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
 | 
						|
            !  sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
 | 
						|
            ! Also,
 | 
						|
            !  g2 >> f2, which means that h2 = g2.
 | 
						|
            d = sqrt( f2 * h2 )
 | 
						|
            c = f2 / d
 | 
						|
            if( c >= safmin ) then
 | 
						|
               r = f / c
 | 
						|
            else
 | 
						|
               ! f2 / sqrt(f2 * h2) < safmin, then
 | 
						|
               !  sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
 | 
						|
               r = f * ( h2 / d )
 | 
						|
            end if
 | 
						|
            s = conjg( g ) * ( f / d )
 | 
						|
         end if
 | 
						|
      else
 | 
						|
!
 | 
						|
!        Use scaled algorithm
 | 
						|
!
 | 
						|
         u = min( safmax, max( safmin, f1, g1 ) )
 | 
						|
         gs = g / u
 | 
						|
         g2 = ABSSQ( gs )
 | 
						|
         if( f1 / u < rtmin ) then
 | 
						|
!
 | 
						|
!           f is not well-scaled when scaled by g1.
 | 
						|
!           Use a different scaling for f.
 | 
						|
!
 | 
						|
            v = min( safmax, max( safmin, f1 ) )
 | 
						|
            w = v / u
 | 
						|
            fs = f / v
 | 
						|
            f2 = ABSSQ( fs )
 | 
						|
            h2 = f2*w**2 + g2
 | 
						|
         else
 | 
						|
!
 | 
						|
!           Otherwise use the same scaling for f and g.
 | 
						|
!
 | 
						|
            w = one
 | 
						|
            fs = f / u
 | 
						|
            f2 = ABSSQ( fs )
 | 
						|
            h2 = f2 + g2
 | 
						|
         end if
 | 
						|
         ! safmin <= f2 <= h2 <= safmax 
 | 
						|
         if( f2 >= h2 * safmin ) then
 | 
						|
            ! safmin <= f2/h2 <= 1, and h2/f2 is finite
 | 
						|
            c = sqrt( f2 / h2 )
 | 
						|
            r = fs / c
 | 
						|
            rtmax = rtmax * 2
 | 
						|
            if( f2 > rtmin .and. h2 < rtmax ) then
 | 
						|
               ! safmin <= sqrt( f2*h2 ) <= safmax
 | 
						|
               s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
 | 
						|
            else
 | 
						|
               s = conjg( gs ) * ( r / h2 )
 | 
						|
            end if
 | 
						|
         else
 | 
						|
            ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
 | 
						|
            ! Moreover,
 | 
						|
            !  safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
 | 
						|
            !  sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
 | 
						|
            ! Also,
 | 
						|
            !  g2 >> f2, which means that h2 = g2.
 | 
						|
            d = sqrt( f2 * h2 )
 | 
						|
            c = f2 / d
 | 
						|
            if( c >= safmin ) then
 | 
						|
               r = fs / c
 | 
						|
            else
 | 
						|
               ! f2 / sqrt(f2 * h2) < safmin, then
 | 
						|
               !  sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
 | 
						|
               r = fs * ( h2 / d )
 | 
						|
            end if
 | 
						|
            s = conjg( gs ) * ( fs / d )
 | 
						|
         end if
 | 
						|
         ! Rescale c and r
 | 
						|
         c = c * w
 | 
						|
         r = r * u
 | 
						|
      end if
 | 
						|
   end if
 | 
						|
   return
 | 
						|
end subroutine
 |