260 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			260 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAQP2 computes a QR factorization with column pivoting of the matrix block.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAQP2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqp2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqp2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqp2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
 | 
						|
*                          WORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, M, N, OFFSET
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            JPVT( * )
 | 
						|
*       REAL               A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAQP2 computes a QR factorization with column pivoting of
 | 
						|
*> the block A(OFFSET+1:M,1:N).
 | 
						|
*> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] OFFSET
 | 
						|
*> \verbatim
 | 
						|
*>          OFFSET is INTEGER
 | 
						|
*>          The number of rows of the matrix A that must be pivoted
 | 
						|
*>          but no factorized. OFFSET >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
 | 
						|
*>          the triangular factor obtained; the elements in block
 | 
						|
*>          A(OFFSET+1:M,1:N) below the diagonal, together with the
 | 
						|
*>          array TAU, represent the orthogonal matrix Q as a product of
 | 
						|
*>          elementary reflectors. Block A(1:OFFSET,1:N) has been
 | 
						|
*>          accordingly pivoted, but no factorized.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] JPVT
 | 
						|
*> \verbatim
 | 
						|
*>          JPVT is INTEGER array, dimension (N)
 | 
						|
*>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
 | 
						|
*>          to the front of A*P (a leading column); if JPVT(i) = 0,
 | 
						|
*>          the i-th column of A is a free column.
 | 
						|
*>          On exit, if JPVT(i) = k, then the i-th column of A*P
 | 
						|
*>          was the k-th column of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VN1
 | 
						|
*> \verbatim
 | 
						|
*>          VN1 is REAL array, dimension (N)
 | 
						|
*>          The vector with the partial column norms.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VN2
 | 
						|
*> \verbatim
 | 
						|
*>          VN2 is REAL array, dimension (N)
 | 
						|
*>          The vector with the exact column norms.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
 | 
						|
*>    X. Sun, Computer Science Dept., Duke University, USA
 | 
						|
*> \n
 | 
						|
*>  Partial column norm updating strategy modified on April 2011
 | 
						|
*>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
 | 
						|
*>    University of Zagreb, Croatia.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*> LAPACK Working Note 176
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
 | 
						|
     $                   WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, M, N, OFFSET
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            JPVT( * )
 | 
						|
      REAL               A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, ITEMP, J, MN, OFFPI, PVT
 | 
						|
      REAL               AII, TEMP, TEMP2, TOL3Z
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLARF, SLARFG, SSWAP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SLAMCH, SNRM2
 | 
						|
      EXTERNAL           ISAMAX, SLAMCH, SNRM2
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      MN = MIN( M-OFFSET, N )
 | 
						|
      TOL3Z = SQRT(SLAMCH('Epsilon'))
 | 
						|
*
 | 
						|
*     Compute factorization.
 | 
						|
*
 | 
						|
      DO 20 I = 1, MN
 | 
						|
*
 | 
						|
         OFFPI = OFFSET + I
 | 
						|
*
 | 
						|
*        Determine ith pivot column and swap if necessary.
 | 
						|
*
 | 
						|
         PVT = ( I-1 ) + ISAMAX( N-I+1, VN1( I ), 1 )
 | 
						|
*
 | 
						|
         IF( PVT.NE.I ) THEN
 | 
						|
            CALL SSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
 | 
						|
            ITEMP = JPVT( PVT )
 | 
						|
            JPVT( PVT ) = JPVT( I )
 | 
						|
            JPVT( I ) = ITEMP
 | 
						|
            VN1( PVT ) = VN1( I )
 | 
						|
            VN2( PVT ) = VN2( I )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Generate elementary reflector H(i).
 | 
						|
*
 | 
						|
         IF( OFFPI.LT.M ) THEN
 | 
						|
            CALL SLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
 | 
						|
     $                   TAU( I ) )
 | 
						|
         ELSE
 | 
						|
            CALL SLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( I.LT.N ) THEN
 | 
						|
*
 | 
						|
*           Apply H(i)**T to A(offset+i:m,i+1:n) from the left.
 | 
						|
*
 | 
						|
            AII = A( OFFPI, I )
 | 
						|
            A( OFFPI, I ) = ONE
 | 
						|
            CALL SLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
 | 
						|
     $                  TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) )
 | 
						|
            A( OFFPI, I ) = AII
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Update partial column norms.
 | 
						|
*
 | 
						|
         DO 10 J = I + 1, N
 | 
						|
            IF( VN1( J ).NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*              NOTE: The following 4 lines follow from the analysis in
 | 
						|
*              Lapack Working Note 176.
 | 
						|
*
 | 
						|
               TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
 | 
						|
               TEMP = MAX( TEMP, ZERO )
 | 
						|
               TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
 | 
						|
               IF( TEMP2 .LE. TOL3Z ) THEN
 | 
						|
                  IF( OFFPI.LT.M ) THEN
 | 
						|
                     VN1( J ) = SNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
 | 
						|
                     VN2( J ) = VN1( J )
 | 
						|
                  ELSE
 | 
						|
                     VN1( J ) = ZERO
 | 
						|
                     VN2( J ) = ZERO
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
                  VN1( J ) = VN1( J )*SQRT( TEMP )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLAQP2
 | 
						|
*
 | 
						|
      END
 |