335 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			335 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DORGBR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DORGBR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgbr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgbr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgbr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          VECT
 | 
						|
*       INTEGER            INFO, K, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DORGBR generates one of the real orthogonal matrices Q or P**T
 | 
						|
*> determined by DGEBRD when reducing a real matrix A to bidiagonal
 | 
						|
*> form: A = Q * B * P**T.  Q and P**T are defined as products of
 | 
						|
*> elementary reflectors H(i) or G(i) respectively.
 | 
						|
*>
 | 
						|
*> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
 | 
						|
*> is of order M:
 | 
						|
*> if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
 | 
						|
*> columns of Q, where m >= n >= k;
 | 
						|
*> if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
 | 
						|
*> M-by-M matrix.
 | 
						|
*>
 | 
						|
*> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
 | 
						|
*> is of order N:
 | 
						|
*> if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
 | 
						|
*> rows of P**T, where n >= m >= k;
 | 
						|
*> if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
 | 
						|
*> an N-by-N matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] VECT
 | 
						|
*> \verbatim
 | 
						|
*>          VECT is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix Q or the matrix P**T is
 | 
						|
*>          required, as defined in the transformation applied by DGEBRD:
 | 
						|
*>          = 'Q':  generate Q;
 | 
						|
*>          = 'P':  generate P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix Q or P**T to be returned.
 | 
						|
*>          M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix Q or P**T to be returned.
 | 
						|
*>          N >= 0.
 | 
						|
*>          If VECT = 'Q', M >= N >= min(M,K);
 | 
						|
*>          if VECT = 'P', N >= M >= min(N,K).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          If VECT = 'Q', the number of columns in the original M-by-K
 | 
						|
*>          matrix reduced by DGEBRD.
 | 
						|
*>          If VECT = 'P', the number of rows in the original K-by-N
 | 
						|
*>          matrix reduced by DGEBRD.
 | 
						|
*>          K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the vectors which define the elementary reflectors,
 | 
						|
*>          as returned by DGEBRD.
 | 
						|
*>          On exit, the M-by-N matrix Q or P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension
 | 
						|
*>                                (min(M,K)) if VECT = 'Q'
 | 
						|
*>                                (min(N,K)) if VECT = 'P'
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i) or G(i), which determines Q or P**T, as
 | 
						|
*>          returned by DGEBRD in its array argument TAUQ or TAUP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
 | 
						|
*>          For optimum performance LWORK >= min(M,N)*NB, where NB
 | 
						|
*>          is the optimal blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleGBcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          VECT
 | 
						|
      INTEGER            INFO, K, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, WANTQ
 | 
						|
      INTEGER            I, IINFO, J, LWKOPT, MN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DORGLQ, DORGQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      WANTQ = LSAME( VECT, 'Q' )
 | 
						|
      MN = MIN( M, N )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
 | 
						|
     $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
 | 
						|
     $         MIN( N, K ) ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( K.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         IF( WANTQ ) THEN
 | 
						|
            IF( M.GE.K ) THEN
 | 
						|
               CALL DORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
 | 
						|
            ELSE
 | 
						|
               IF( M.GT.1 ) THEN
 | 
						|
                  CALL DORGQR( M-1, M-1, M-1, A, LDA, TAU, WORK, -1,
 | 
						|
     $                         IINFO )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
 | 
						|
            ELSE
 | 
						|
               IF( N.GT.1 ) THEN
 | 
						|
                  CALL DORGLQ( N-1, N-1, N-1, A, LDA, TAU, WORK, -1,
 | 
						|
     $                         IINFO )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         LWKOPT = INT( WORK( 1 ) )
 | 
						|
         LWKOPT = MAX (LWKOPT, MN)
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DORGBR', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTQ ) THEN
 | 
						|
*
 | 
						|
*        Form Q, determined by a call to DGEBRD to reduce an m-by-k
 | 
						|
*        matrix
 | 
						|
*
 | 
						|
         IF( M.GE.K ) THEN
 | 
						|
*
 | 
						|
*           If m >= k, assume m >= n >= k
 | 
						|
*
 | 
						|
            CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           If m < k, assume m = n
 | 
						|
*
 | 
						|
*           Shift the vectors which define the elementary reflectors one
 | 
						|
*           column to the right, and set the first row and column of Q
 | 
						|
*           to those of the unit matrix
 | 
						|
*
 | 
						|
            DO 20 J = M, 2, -1
 | 
						|
               A( 1, J ) = ZERO
 | 
						|
               DO 10 I = J + 1, M
 | 
						|
                  A( I, J ) = A( I, J-1 )
 | 
						|
   10          CONTINUE
 | 
						|
   20       CONTINUE
 | 
						|
            A( 1, 1 ) = ONE
 | 
						|
            DO 30 I = 2, M
 | 
						|
               A( I, 1 ) = ZERO
 | 
						|
   30       CONTINUE
 | 
						|
            IF( M.GT.1 ) THEN
 | 
						|
*
 | 
						|
*              Form Q(2:m,2:m)
 | 
						|
*
 | 
						|
               CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
 | 
						|
     $                      LWORK, IINFO )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form P**T, determined by a call to DGEBRD to reduce a k-by-n
 | 
						|
*        matrix
 | 
						|
*
 | 
						|
         IF( K.LT.N ) THEN
 | 
						|
*
 | 
						|
*           If k < n, assume k <= m <= n
 | 
						|
*
 | 
						|
            CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           If k >= n, assume m = n
 | 
						|
*
 | 
						|
*           Shift the vectors which define the elementary reflectors one
 | 
						|
*           row downward, and set the first row and column of P**T to
 | 
						|
*           those of the unit matrix
 | 
						|
*
 | 
						|
            A( 1, 1 ) = ONE
 | 
						|
            DO 40 I = 2, N
 | 
						|
               A( I, 1 ) = ZERO
 | 
						|
   40       CONTINUE
 | 
						|
            DO 60 J = 2, N
 | 
						|
               DO 50 I = J - 1, 2, -1
 | 
						|
                  A( I, J ) = A( I-1, J )
 | 
						|
   50          CONTINUE
 | 
						|
               A( 1, J ) = ZERO
 | 
						|
   60       CONTINUE
 | 
						|
            IF( N.GT.1 ) THEN
 | 
						|
*
 | 
						|
*              Form P**T(2:n,2:n)
 | 
						|
*
 | 
						|
               CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
 | 
						|
     $                      LWORK, IINFO )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DORGBR
 | 
						|
*
 | 
						|
      END
 |