100 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLARMM
 | 
						|
*
 | 
						|
* Definition:
 | 
						|
* ===========
 | 
						|
*
 | 
						|
*      DOUBLE PRECISION FUNCTION DLARMM( ANORM, BNORM, CNORM )
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
*      DOUBLE PRECISION   ANORM, BNORM, CNORM
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*>  \par Purpose:
 | 
						|
*  =======
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLARMM returns a factor s in (0, 1] such that the linear updates
 | 
						|
*>
 | 
						|
*>    (s * C) - A * (s * B)  and  (s * C) - (s * A) * B
 | 
						|
*>
 | 
						|
*> cannot overflow, where A, B, and C are matrices of conforming
 | 
						|
*> dimensions.
 | 
						|
*>
 | 
						|
*> This is an auxiliary routine so there is no argument checking.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  =========
 | 
						|
*
 | 
						|
*> \param[in] ANORM
 | 
						|
*> \verbatim
 | 
						|
*>          ANORM is DOUBLE PRECISION
 | 
						|
*>          The infinity norm of A. ANORM >= 0.
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BNORM
 | 
						|
*> \verbatim
 | 
						|
*>          BNORM is DOUBLE PRECISION
 | 
						|
*>          The infinity norm of B. BNORM >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CNORM
 | 
						|
*> \verbatim
 | 
						|
*>          CNORM is DOUBLE PRECISION
 | 
						|
*>          The infinity norm of C. CNORM >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
*>  References:
 | 
						|
*>    C. C. Kjelgaard Mikkelsen and L. Karlsson, Blocked Algorithms for
 | 
						|
*>    Robust Solution of Triangular Linear Systems. In: International
 | 
						|
*>    Conference on Parallel Processing and Applied Mathematics, pages
 | 
						|
*>    68--78. Springer, 2017.
 | 
						|
*>
 | 
						|
*> \ingroup OTHERauxiliary
 | 
						|
*  =====================================================================
 | 
						|
 | 
						|
      DOUBLE PRECISION FUNCTION DLARMM( ANORM, BNORM, CNORM )
 | 
						|
      IMPLICIT NONE
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   ANORM, BNORM, CNORM
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, HALF, FOUR
 | 
						|
      PARAMETER          ( ONE = 1.0D0, HALF = 0.5D+0, FOUR = 4.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
       DOUBLE PRECISION   BIGNUM, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*
 | 
						|
*     Determine machine dependent parameters to control overflow.
 | 
						|
*
 | 
						|
      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
 | 
						|
      BIGNUM = ( ONE / SMLNUM ) / FOUR
 | 
						|
*
 | 
						|
*     Compute a scale factor.
 | 
						|
*
 | 
						|
      DLARMM = ONE
 | 
						|
      IF( BNORM .LE. ONE ) THEN
 | 
						|
         IF( ANORM * BNORM .GT. BIGNUM - CNORM ) THEN
 | 
						|
            DLARMM = HALF
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         IF( ANORM .GT. (BIGNUM - CNORM) / BNORM ) THEN
 | 
						|
            DLARMM = HALF / BNORM
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     ==== End of DLARMM ====
 | 
						|
*
 | 
						|
      END
 |