411 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAMSWLQ
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*      SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
 | 
						|
*     $                LDT, C, LDC, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
*      CHARACTER         SIDE, TRANS
 | 
						|
*      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
*      DOUBLE        A( LDA, * ), WORK( * ), C(LDC, * ),
 | 
						|
*     $                  T( LDT, * )
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    DLAMSWLQ overwrites the general real M-by-N matrix C with
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>                    SIDE = 'L'     SIDE = 'R'
 | 
						|
*>    TRANS = 'N':      Q * C          C * Q
 | 
						|
*>    TRANS = 'T':      Q**T * C       C * Q**T
 | 
						|
*>    where Q is a real orthogonal matrix defined as the product of blocked
 | 
						|
*>    elementary reflectors computed by short wide LQ
 | 
						|
*>    factorization (DLASWLQ)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': apply Q or Q**T from the Left;
 | 
						|
*>          = 'R': apply Q or Q**T from the Right.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N':  No transpose, apply Q;
 | 
						|
*>          = 'T':  Transpose, apply Q**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C.  M >=0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines
 | 
						|
*>          the matrix Q.
 | 
						|
*>          M >= K >= 0;
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*> \param[in] MB
 | 
						|
*> \verbatim
 | 
						|
*>          MB is INTEGER
 | 
						|
*>          The row block size to be used in the blocked LQ.
 | 
						|
*>          M >= MB >= 1
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The column block size to be used in the blocked LQ.
 | 
						|
*>          NB > M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension
 | 
						|
*>                               (LDA,M) if SIDE = 'L',
 | 
						|
*>                               (LDA,N) if SIDE = 'R'
 | 
						|
*>          The i-th row must contain the vector which defines the blocked
 | 
						|
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | 
						|
*>          DLASWLQ in the first k rows of its array argument A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,K).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is DOUBLE PRECISION array, dimension
 | 
						|
*>          ( M * Number of blocks(CEIL(N-K/NB-K)),
 | 
						|
*>          The blocked upper triangular block reflectors stored in compact form
 | 
						|
*>          as a sequence of upper triangular blocks.  See below
 | 
						|
*>          for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= MB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (LDC,N)
 | 
						|
*>          On entry, the M-by-N matrix C.
 | 
						|
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If SIDE = 'L', LWORK >= max(1,NB) * MB;
 | 
						|
*>          if SIDE = 'R', LWORK >= max(1,M) * MB.
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
 | 
						|
*> representing Q as a product of other orthogonal matrices
 | 
						|
*>   Q = Q(1) * Q(2) * . . . * Q(k)
 | 
						|
*> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
 | 
						|
*>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
 | 
						|
*>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
 | 
						|
*>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
 | 
						|
*>   . . .
 | 
						|
*>
 | 
						|
*> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
 | 
						|
*> stored under the diagonal of rows 1:MB of A, and by upper triangular
 | 
						|
*> block reflectors, stored in array T(1:LDT,1:N).
 | 
						|
*> For more information see Further Details in GELQT.
 | 
						|
*>
 | 
						|
*> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
 | 
						|
*> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
 | 
						|
*> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
 | 
						|
*> The last Q(k) may use fewer rows.
 | 
						|
*> For more information see Further Details in TPLQT.
 | 
						|
*>
 | 
						|
*> For more details of the overall algorithm, see the description of
 | 
						|
*> Sequential TSQR in Section 2.2 of [1].
 | 
						|
*>
 | 
						|
*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
 | 
						|
*>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
 | 
						|
*>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
 | 
						|
     $    LDT, C, LDC, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER         SIDE, TRANS
 | 
						|
      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION A( LDA, * ), WORK( * ), C(LDC, * ),
 | 
						|
     $      T( LDT, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
 | 
						|
      INTEGER    I, II, KK, CTR, LW
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DTPMLQT, DGEMLQT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      LQUERY  = LWORK.LT.0
 | 
						|
      NOTRAN  = LSAME( TRANS, 'N' )
 | 
						|
      TRAN    = LSAME( TRANS, 'T' )
 | 
						|
      LEFT    = LSAME( SIDE, 'L' )
 | 
						|
      RIGHT   = LSAME( SIDE, 'R' )
 | 
						|
      IF (LEFT) THEN
 | 
						|
        LW = N * MB
 | 
						|
      ELSE
 | 
						|
        LW = M * MB
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( K.LT.0 ) THEN
 | 
						|
        INFO = -5
 | 
						|
      ELSE IF( M.LT.K ) THEN
 | 
						|
        INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
        INFO = -4
 | 
						|
      ELSE IF( K.LT.MB .OR. MB.LT.1) THEN
 | 
						|
        INFO = -6
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
 | 
						|
        INFO = -9
 | 
						|
      ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
 | 
						|
        INFO = -11
 | 
						|
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
 | 
						|
        INFO = -15
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
        CALL XERBLA( 'DLAMSWLQ', -INFO )
 | 
						|
        WORK(1) = LW
 | 
						|
        RETURN
 | 
						|
      ELSE IF (LQUERY) THEN
 | 
						|
        WORK(1) = LW
 | 
						|
        RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN(M,N,K).EQ.0 ) THEN
 | 
						|
        RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
 | 
						|
        CALL DGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
 | 
						|
     $        T, LDT, C, LDC, WORK, INFO)
 | 
						|
        RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF(LEFT.AND.TRAN) THEN
 | 
						|
*
 | 
						|
*         Multiply Q to the last block of C
 | 
						|
*
 | 
						|
          KK = MOD((M-K),(NB-K))
 | 
						|
          CTR = (M-K)/(NB-K)
 | 
						|
          IF (KK.GT.0) THEN
 | 
						|
            II=M-KK+1
 | 
						|
            CALL DTPMLQT('L','T',KK , N, K, 0, MB, A(1,II), LDA,
 | 
						|
     $        T(1,CTR*K+1), LDT, C(1,1), LDC,
 | 
						|
     $        C(II,1), LDC, WORK, INFO )
 | 
						|
          ELSE
 | 
						|
            II=M+1
 | 
						|
          END IF
 | 
						|
*
 | 
						|
          DO I=II-(NB-K),NB+1,-(NB-K)
 | 
						|
*
 | 
						|
*         Multiply Q to the current block of C (1:M,I:I+NB)
 | 
						|
*
 | 
						|
            CTR = CTR - 1
 | 
						|
            CALL DTPMLQT('L','T',NB-K , N, K, 0,MB, A(1,I), LDA,
 | 
						|
     $          T(1, CTR*K+1),LDT, C(1,1), LDC,
 | 
						|
     $          C(I,1), LDC, WORK, INFO )
 | 
						|
 | 
						|
          END DO
 | 
						|
*
 | 
						|
*         Multiply Q to the first block of C (1:M,1:NB)
 | 
						|
*
 | 
						|
          CALL DGEMLQT('L','T',NB , N, K, MB, A(1,1), LDA, T
 | 
						|
     $              ,LDT ,C(1,1), LDC, WORK, INFO )
 | 
						|
*
 | 
						|
      ELSE IF (LEFT.AND.NOTRAN) THEN
 | 
						|
*
 | 
						|
*         Multiply Q to the first block of C
 | 
						|
*
 | 
						|
         KK = MOD((M-K),(NB-K))
 | 
						|
         II=M-KK+1
 | 
						|
         CTR = 1
 | 
						|
         CALL DGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T
 | 
						|
     $              ,LDT ,C(1,1), LDC, WORK, INFO )
 | 
						|
*
 | 
						|
         DO I=NB+1,II-NB+K,(NB-K)
 | 
						|
*
 | 
						|
*         Multiply Q to the current block of C (I:I+NB,1:N)
 | 
						|
*
 | 
						|
          CALL DTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA,
 | 
						|
     $         T(1,CTR*K+1), LDT, C(1,1), LDC,
 | 
						|
     $         C(I,1), LDC, WORK, INFO )
 | 
						|
          CTR = CTR + 1
 | 
						|
*
 | 
						|
         END DO
 | 
						|
         IF(II.LE.M) THEN
 | 
						|
*
 | 
						|
*         Multiply Q to the last block of C
 | 
						|
*
 | 
						|
          CALL DTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA,
 | 
						|
     $        T(1,CTR*K+1), LDT, C(1,1), LDC,
 | 
						|
     $        C(II,1), LDC, WORK, INFO )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF(RIGHT.AND.NOTRAN) THEN
 | 
						|
*
 | 
						|
*         Multiply Q to the last block of C
 | 
						|
*
 | 
						|
          KK = MOD((N-K),(NB-K))
 | 
						|
          CTR = (N-K)/(NB-K)
 | 
						|
          IF (KK.GT.0) THEN
 | 
						|
            II=N-KK+1
 | 
						|
            CALL DTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA,
 | 
						|
     $        T(1,CTR *K+1), LDT, C(1,1), LDC,
 | 
						|
     $        C(1,II), LDC, WORK, INFO )
 | 
						|
          ELSE
 | 
						|
            II=N+1
 | 
						|
          END IF
 | 
						|
*
 | 
						|
          DO I=II-(NB-K),NB+1,-(NB-K)
 | 
						|
*
 | 
						|
*         Multiply Q to the current block of C (1:M,I:I+MB)
 | 
						|
*
 | 
						|
             CTR = CTR - 1
 | 
						|
             CALL DTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA,
 | 
						|
     $        T(1,CTR*K+1), LDT, C(1,1), LDC,
 | 
						|
     $        C(1,I), LDC, WORK, INFO )
 | 
						|
*
 | 
						|
          END DO
 | 
						|
*
 | 
						|
*         Multiply Q to the first block of C (1:M,1:MB)
 | 
						|
*
 | 
						|
          CALL DGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T
 | 
						|
     $            ,LDT ,C(1,1), LDC, WORK, INFO )
 | 
						|
*
 | 
						|
      ELSE IF (RIGHT.AND.TRAN) THEN
 | 
						|
*
 | 
						|
*       Multiply Q to the first block of C
 | 
						|
*
 | 
						|
         KK = MOD((N-K),(NB-K))
 | 
						|
         CTR = 1
 | 
						|
         II=N-KK+1
 | 
						|
         CALL DGEMLQT('R','T',M , NB, K, MB, A(1,1), LDA, T
 | 
						|
     $            ,LDT ,C(1,1), LDC, WORK, INFO )
 | 
						|
*
 | 
						|
         DO I=NB+1,II-NB+K,(NB-K)
 | 
						|
*
 | 
						|
*         Multiply Q to the current block of C (1:M,I:I+MB)
 | 
						|
*
 | 
						|
          CALL DTPMLQT('R','T',M , NB-K, K, 0,MB, A(1,I), LDA,
 | 
						|
     $       T(1,CTR*K+1), LDT, C(1,1), LDC,
 | 
						|
     $       C(1,I), LDC, WORK, INFO )
 | 
						|
          CTR = CTR + 1
 | 
						|
*
 | 
						|
         END DO
 | 
						|
         IF(II.LE.N) THEN
 | 
						|
*
 | 
						|
*       Multiply Q to the last block of C
 | 
						|
*
 | 
						|
          CALL DTPMLQT('R','T',M , KK, K, 0,MB, A(1,II), LDA,
 | 
						|
     $      T(1,CTR*K+1),LDT, C(1,1), LDC,
 | 
						|
     $      C(1,II), LDC, WORK, INFO )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK(1) = LW
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLAMSWLQ
 | 
						|
*
 | 
						|
      END
 |