1055 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1055 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE DGEDMD( JOBS, JOBZ, JOBR, JOBF,  WHTSVD,  &
 | 
						|
                         M, N, X, LDX, Y, LDY, NRNK, TOL,  &
 | 
						|
                         K, REIG,  IMEIG,   Z, LDZ,  RES,  &
 | 
						|
                         B, LDB, W,  LDW,   S, LDS,        &
 | 
						|
                         WORK, LWORK, IWORK, LIWORK, INFO )
 | 
						|
! March 2023
 | 
						|
!.....
 | 
						|
      USE                   iso_fortran_env
 | 
						|
      IMPLICIT NONE
 | 
						|
      INTEGER, PARAMETER :: WP = real64
 | 
						|
!.....
 | 
						|
!     Scalar arguments
 | 
						|
      CHARACTER, INTENT(IN)   :: JOBS,   JOBZ,  JOBR,  JOBF
 | 
						|
      INTEGER,   INTENT(IN)   :: WHTSVD, M, N,   LDX,  LDY, &
 | 
						|
                                 NRNK, LDZ, LDB, LDW,  LDS, &
 | 
						|
                                 LWORK,  LIWORK
 | 
						|
      INTEGER,   INTENT(OUT)  :: K, INFO
 | 
						|
      REAL(KIND=WP), INTENT(IN)  :: TOL
 | 
						|
!     Array arguments
 | 
						|
      REAL(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
 | 
						|
      REAL(KIND=WP), INTENT(OUT)   :: Z(LDZ,*), B(LDB,*), &
 | 
						|
                                      W(LDW,*), S(LDS,*)
 | 
						|
      REAL(KIND=WP), INTENT(OUT)   :: REIG(*),  IMEIG(*), &
 | 
						|
                                      RES(*)
 | 
						|
      REAL(KIND=WP), INTENT(OUT)   :: WORK(*)
 | 
						|
      INTEGER,       INTENT(OUT)   :: IWORK(*)
 | 
						|
!............................................................
 | 
						|
!     Purpose
 | 
						|
!     =======
 | 
						|
!     DGEDMD computes the Dynamic Mode Decomposition (DMD) for
 | 
						|
!     a pair of data snapshot matrices. For the input matrices
 | 
						|
!     X and Y such that Y = A*X with an unaccessible matrix
 | 
						|
!     A, DGEDMD computes a certain number of Ritz pairs of A using
 | 
						|
!     the standard Rayleigh-Ritz extraction from a subspace of
 | 
						|
!     range(X) that is determined using the leading left singular
 | 
						|
!     vectors of X. Optionally, DGEDMD returns the residuals
 | 
						|
!     of the computed Ritz pairs, the information needed for
 | 
						|
!     a refinement of the Ritz vectors, or the eigenvectors of
 | 
						|
!     the Exact DMD.
 | 
						|
!     For further details see the references listed
 | 
						|
!     below. For more details of the implementation see [3].
 | 
						|
!
 | 
						|
!     References
 | 
						|
!     ==========
 | 
						|
!     [1] P. Schmid: Dynamic mode decomposition of numerical
 | 
						|
!         and experimental data,
 | 
						|
!         Journal of Fluid Mechanics 656, 5-28, 2010.
 | 
						|
!     [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
 | 
						|
!         decompositions: analysis and enhancements,
 | 
						|
!         SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
 | 
						|
!     [3] Z. Drmac: A LAPACK implementation of the Dynamic
 | 
						|
!         Mode Decomposition I. Technical report. AIMDyn Inc.
 | 
						|
!         and LAPACK Working Note 298.
 | 
						|
!     [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
 | 
						|
!         Brunton, N. Kutz: On Dynamic Mode Decomposition:
 | 
						|
!         Theory and Applications, Journal of Computational
 | 
						|
!         Dynamics 1(2), 391 -421, 2014.
 | 
						|
!
 | 
						|
!......................................................................
 | 
						|
!     Developed and supported by:
 | 
						|
!     ===========================
 | 
						|
!     Developed and coded by Zlatko Drmac, Faculty of Science,
 | 
						|
!     University of Zagreb;  drmac@math.hr
 | 
						|
!     In cooperation with
 | 
						|
!     AIMdyn Inc., Santa Barbara, CA.
 | 
						|
!     and supported by
 | 
						|
!     - DARPA SBIR project "Koopman Operator-Based Forecasting
 | 
						|
!     for Nonstationary Processes from Near-Term, Limited
 | 
						|
!     Observational Data" Contract No: W31P4Q-21-C-0007
 | 
						|
!     - DARPA PAI project "Physics-Informed Machine Learning
 | 
						|
!     Methodologies" Contract No: HR0011-18-9-0033
 | 
						|
!     - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
 | 
						|
!     Framework for Space-Time Analysis of Process Dynamics"
 | 
						|
!     Contract No: HR0011-16-C-0116
 | 
						|
!     Any opinions, findings and conclusions or recommendations
 | 
						|
!     expressed in this material are those of the author and
 | 
						|
!     do not necessarily reflect the views of the DARPA SBIR
 | 
						|
!     Program Office
 | 
						|
!============================================================
 | 
						|
!     Distribution Statement A:
 | 
						|
!     Approved for Public Release, Distribution Unlimited.
 | 
						|
!     Cleared by DARPA on September 29, 2022
 | 
						|
!============================================================
 | 
						|
!............................................................
 | 
						|
!     Arguments
 | 
						|
!     =========
 | 
						|
!     JOBS (input) CHARACTER*1
 | 
						|
!     Determines whether the initial data snapshots are scaled
 | 
						|
!     by a diagonal matrix.
 | 
						|
!     'S' :: The data snapshots matrices X and Y are multiplied
 | 
						|
!            with a diagonal matrix D so that X*D has unit
 | 
						|
!            nonzero columns (in the Euclidean 2-norm)
 | 
						|
!     'C' :: The snapshots are scaled as with the 'S' option.
 | 
						|
!            If it is found that an i-th column of X is zero
 | 
						|
!            vector and the corresponding i-th column of Y is
 | 
						|
!            non-zero, then the i-th column of Y is set to
 | 
						|
!            zero and a warning flag is raised.
 | 
						|
!     'Y' :: The data snapshots matrices X and Y are multiplied
 | 
						|
!            by a diagonal matrix D so that Y*D has unit
 | 
						|
!            nonzero columns (in the Euclidean 2-norm)
 | 
						|
!     'N' :: No data scaling.
 | 
						|
!.....
 | 
						|
!     JOBZ (input) CHARACTER*1
 | 
						|
!     Determines whether the eigenvectors (Koopman modes) will
 | 
						|
!     be computed.
 | 
						|
!     'V' :: The eigenvectors (Koopman modes) will be computed
 | 
						|
!            and returned in the matrix Z.
 | 
						|
!            See the description of Z.
 | 
						|
!     'F' :: The eigenvectors (Koopman modes) will be returned
 | 
						|
!            in factored form as the product X(:,1:K)*W, where X
 | 
						|
!            contains a POD basis (leading left singular vectors
 | 
						|
!            of the data matrix X) and W contains the eigenvectors
 | 
						|
!            of the corresponding Rayleigh quotient.
 | 
						|
!            See the descriptions of K, X, W, Z.
 | 
						|
!     'N' :: The eigenvectors are not computed.
 | 
						|
!.....
 | 
						|
!     JOBR (input) CHARACTER*1
 | 
						|
!     Determines whether to compute the residuals.
 | 
						|
!     'R' :: The residuals for the computed eigenpairs will be
 | 
						|
!            computed and stored in the array RES.
 | 
						|
!            See the description of RES.
 | 
						|
!            For this option to be legal, JOBZ must be 'V'.
 | 
						|
!     'N' :: The residuals are not computed.
 | 
						|
!.....
 | 
						|
!     JOBF (input) CHARACTER*1
 | 
						|
!     Specifies whether to store information needed for post-
 | 
						|
!     processing (e.g. computing refined Ritz vectors)
 | 
						|
!     'R' :: The matrix needed for the refinement of the Ritz
 | 
						|
!            vectors is computed and stored in the array B.
 | 
						|
!            See the description of B.
 | 
						|
!     'E' :: The unscaled eigenvectors of the Exact DMD are
 | 
						|
!            computed and returned in the array B. See the
 | 
						|
!            description of B.
 | 
						|
!     'N' :: No eigenvector refinement data is computed.
 | 
						|
!.....
 | 
						|
!     WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
 | 
						|
!     Allows for a selection of the SVD algorithm from the
 | 
						|
!     LAPACK library.
 | 
						|
!     1 :: DGESVD (the QR SVD algorithm)
 | 
						|
!     2 :: DGESDD (the Divide and Conquer algorithm; if enough
 | 
						|
!          workspace available, this is the fastest option)
 | 
						|
!     3 :: DGESVDQ (the preconditioned QR SVD  ; this and 4
 | 
						|
!          are the most accurate options)
 | 
						|
!     4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3
 | 
						|
!          are the most accurate options)
 | 
						|
!     For the four methods above, a significant difference in
 | 
						|
!     the accuracy of small singular values is possible if
 | 
						|
!     the snapshots vary in norm so that X is severely
 | 
						|
!     ill-conditioned. If small (smaller than EPS*||X||)
 | 
						|
!     singular values are of interest and JOBS=='N',  then
 | 
						|
!     the options (3, 4) give the most accurate results, where
 | 
						|
!     the option 4 is slightly better and with stronger
 | 
						|
!     theoretical background.
 | 
						|
!     If JOBS=='S', i.e. the columns of X will be normalized,
 | 
						|
!     then all methods give nearly equally accurate results.
 | 
						|
!.....
 | 
						|
!     M (input) INTEGER, M>= 0
 | 
						|
!     The state space dimension (the row dimension of X, Y).
 | 
						|
!.....
 | 
						|
!     N (input) INTEGER, 0 <= N <= M
 | 
						|
!     The number of data snapshot pairs
 | 
						|
!     (the number of columns of X and Y).
 | 
						|
!.....
 | 
						|
!     X (input/output) REAL(KIND=WP) M-by-N array
 | 
						|
!     > On entry, X contains the data snapshot matrix X. It is
 | 
						|
!     assumed that the column norms of X are in the range of
 | 
						|
!     the normalized floating point numbers.
 | 
						|
!     < On exit, the leading K columns of X contain a POD basis,
 | 
						|
!     i.e. the leading K left singular vectors of the input
 | 
						|
!     data matrix X, U(:,1:K). All N columns of X contain all
 | 
						|
!     left singular vectors of the input matrix X.
 | 
						|
!     See the descriptions of K, Z and W.
 | 
						|
!.....
 | 
						|
!     LDX (input) INTEGER, LDX >= M
 | 
						|
!     The leading dimension of the array X.
 | 
						|
!.....
 | 
						|
!     Y (input/workspace/output) REAL(KIND=WP) M-by-N array
 | 
						|
!     > On entry, Y contains the data snapshot matrix Y
 | 
						|
!     < On exit,
 | 
						|
!     If JOBR == 'R', the leading K columns of Y  contain
 | 
						|
!     the residual vectors for the computed Ritz pairs.
 | 
						|
!     See the description of RES.
 | 
						|
!     If JOBR == 'N', Y contains the original input data,
 | 
						|
!                     scaled according to the value of JOBS.
 | 
						|
!.....
 | 
						|
!     LDY (input) INTEGER , LDY >= M
 | 
						|
!     The leading dimension of the array Y.
 | 
						|
!.....
 | 
						|
!     NRNK (input) INTEGER
 | 
						|
!     Determines the mode how to compute the numerical rank,
 | 
						|
!     i.e. how to truncate small singular values of the input
 | 
						|
!     matrix X. On input, if
 | 
						|
!     NRNK = -1 :: i-th singular value sigma(i) is truncated
 | 
						|
!                  if sigma(i) <= TOL*sigma(1).
 | 
						|
!                  This option is recommended.
 | 
						|
!     NRNK = -2 :: i-th singular value sigma(i) is truncated
 | 
						|
!                  if sigma(i) <= TOL*sigma(i-1)
 | 
						|
!                  This option is included for R&D purposes.
 | 
						|
!                  It requires highly accurate SVD, which
 | 
						|
!                  may not be feasible.
 | 
						|
!
 | 
						|
!     The numerical rank can be enforced by using positive
 | 
						|
!     value of NRNK as follows:
 | 
						|
!     0 < NRNK <= N :: at most NRNK largest singular values
 | 
						|
!     will be used. If the number of the computed nonzero
 | 
						|
!     singular values is less than NRNK, then only those
 | 
						|
!     nonzero values will be used and the actually used
 | 
						|
!     dimension is less than NRNK. The actual number of
 | 
						|
!     the nonzero singular values is returned in the variable
 | 
						|
!     K. See the descriptions of TOL and  K.
 | 
						|
!.....
 | 
						|
!     TOL (input) REAL(KIND=WP), 0 <= TOL < 1
 | 
						|
!     The tolerance for truncating small singular values.
 | 
						|
!     See the description of NRNK.
 | 
						|
!.....
 | 
						|
!     K (output) INTEGER,  0 <= K <= N
 | 
						|
!     The dimension of the POD basis for the data snapshot
 | 
						|
!     matrix X and the number of the computed Ritz pairs.
 | 
						|
!     The value of K is determined according to the rule set
 | 
						|
!     by the parameters NRNK and TOL.
 | 
						|
!     See the descriptions of NRNK and TOL.
 | 
						|
!.....
 | 
						|
!     REIG (output) REAL(KIND=WP) N-by-1 array
 | 
						|
!     The leading K (K<=N) entries of REIG contain
 | 
						|
!     the real parts of the computed eigenvalues
 | 
						|
!     REIG(1:K) + sqrt(-1)*IMEIG(1:K).
 | 
						|
!     See the descriptions of K, IMEIG, and Z.
 | 
						|
!.....
 | 
						|
!     IMEIG (output) REAL(KIND=WP) N-by-1 array
 | 
						|
!     The leading K (K<=N) entries of IMEIG contain
 | 
						|
!     the imaginary parts of the computed eigenvalues
 | 
						|
!     REIG(1:K) + sqrt(-1)*IMEIG(1:K).
 | 
						|
!     The eigenvalues are determined as follows:
 | 
						|
!     If IMEIG(i) == 0, then the corresponding eigenvalue is
 | 
						|
!     real, LAMBDA(i) = REIG(i).
 | 
						|
!     If IMEIG(i)>0, then the corresponding complex
 | 
						|
!     conjugate pair of eigenvalues reads
 | 
						|
!     LAMBDA(i)   = REIG(i) + sqrt(-1)*IMAG(i)
 | 
						|
!     LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
 | 
						|
!     That is, complex conjugate pairs have consecutive
 | 
						|
!     indices (i,i+1), with the positive imaginary part
 | 
						|
!     listed first.
 | 
						|
!     See the descriptions of K, REIG, and Z.
 | 
						|
!.....
 | 
						|
!     Z (workspace/output) REAL(KIND=WP)  M-by-N array
 | 
						|
!     If JOBZ =='V' then
 | 
						|
!        Z contains real Ritz vectors as follows:
 | 
						|
!        If IMEIG(i)=0, then Z(:,i) is an eigenvector of
 | 
						|
!        the i-th Ritz value; ||Z(:,i)||_2=1.
 | 
						|
!        If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
 | 
						|
!        [Z(:,i) Z(:,i+1)] span an invariant subspace and
 | 
						|
!        the Ritz values extracted from this subspace are
 | 
						|
!        REIG(i) + sqrt(-1)*IMEIG(i) and
 | 
						|
!        REIG(i) - sqrt(-1)*IMEIG(i).
 | 
						|
!        The corresponding eigenvectors are
 | 
						|
!        Z(:,i) + sqrt(-1)*Z(:,i+1) and
 | 
						|
!        Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
 | 
						|
!        || Z(:,i:i+1)||_F = 1.
 | 
						|
!     If JOBZ == 'F', then the above descriptions hold for
 | 
						|
!     the columns of X(:,1:K)*W(1:K,1:K), where the columns
 | 
						|
!     of W(1:k,1:K) are the computed eigenvectors of the
 | 
						|
!     K-by-K Rayleigh quotient. The columns of W(1:K,1:K)
 | 
						|
!     are similarly structured: If IMEIG(i) == 0 then
 | 
						|
!     X(:,1:K)*W(:,i) is an eigenvector, and if IMEIG(i)>0
 | 
						|
!     then X(:,1:K)*W(:,i)+sqrt(-1)*X(:,1:K)*W(:,i+1) and
 | 
						|
!          X(:,1:K)*W(:,i)-sqrt(-1)*X(:,1:K)*W(:,i+1)
 | 
						|
!     are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
 | 
						|
!     See the descriptions of REIG, IMEIG, X and W.
 | 
						|
!.....
 | 
						|
!     LDZ (input) INTEGER , LDZ >= M
 | 
						|
!     The leading dimension of the array Z.
 | 
						|
!.....
 | 
						|
!     RES (output) REAL(KIND=WP) N-by-1 array
 | 
						|
!     RES(1:K) contains the residuals for the K computed
 | 
						|
!     Ritz pairs.
 | 
						|
!     If LAMBDA(i) is real, then
 | 
						|
!        RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
 | 
						|
!     If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
 | 
						|
!     then
 | 
						|
!     RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
 | 
						|
!     where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
 | 
						|
!               [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
 | 
						|
!     It holds that
 | 
						|
!     RES(i)   = || A*ZC(:,i)   - LAMBDA(i)  *ZC(:,i)   ||_2
 | 
						|
!     RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
 | 
						|
!     where ZC(:,i)   =  Z(:,i) + sqrt(-1)*Z(:,i+1)
 | 
						|
!           ZC(:,i+1) =  Z(:,i) - sqrt(-1)*Z(:,i+1)
 | 
						|
!     See the description of REIG, IMEIG and Z.
 | 
						|
!.....
 | 
						|
!     B (output) REAL(KIND=WP)  M-by-N array.
 | 
						|
!     IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
 | 
						|
!     be used for computing the refined vectors; see further
 | 
						|
!     details in the provided references.
 | 
						|
!     If JOBF == 'E', B(1:M,1;K) contains
 | 
						|
!     A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
 | 
						|
!     Exact DMD, up to scaling by the inverse eigenvalues.
 | 
						|
!     If JOBF =='N', then B is not referenced.
 | 
						|
!     See the descriptions of X, W, K.
 | 
						|
!.....
 | 
						|
!     LDB (input) INTEGER, LDB >= M
 | 
						|
!     The leading dimension of the array B.
 | 
						|
!.....
 | 
						|
!     W (workspace/output) REAL(KIND=WP) N-by-N array
 | 
						|
!     On exit, W(1:K,1:K) contains the K computed
 | 
						|
!     eigenvectors of the matrix Rayleigh quotient (real and
 | 
						|
!     imaginary parts for each complex conjugate pair of the
 | 
						|
!     eigenvalues). The Ritz vectors (returned in Z) are the
 | 
						|
!     product of X (containing a POD basis for the input
 | 
						|
!     matrix X) and W. See the descriptions of K, S, X and Z.
 | 
						|
!     W is also used as a workspace to temporarily store the
 | 
						|
!     right singular vectors of X.
 | 
						|
!.....
 | 
						|
!     LDW (input) INTEGER, LDW >= N
 | 
						|
!     The leading dimension of the array W.
 | 
						|
!.....
 | 
						|
!     S (workspace/output) REAL(KIND=WP) N-by-N array
 | 
						|
!     The array S(1:K,1:K) is used for the matrix Rayleigh
 | 
						|
!     quotient. This content is overwritten during
 | 
						|
!     the eigenvalue decomposition by DGEEV.
 | 
						|
!     See the description of K.
 | 
						|
!.....
 | 
						|
!     LDS (input) INTEGER, LDS >= N
 | 
						|
!     The leading dimension of the array S.
 | 
						|
!.....
 | 
						|
!     WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
 | 
						|
!     On exit, WORK(1:N) contains the singular values of
 | 
						|
!     X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
 | 
						|
!     If WHTSVD==4, then WORK(N+1) and WORK(N+2) contain
 | 
						|
!     scaling factor WORK(N+2)/WORK(N+1) used to scale X
 | 
						|
!     and Y to avoid overflow in the SVD of X.
 | 
						|
!     This may be of interest if the scaling option is off
 | 
						|
!     and as many as possible smallest eigenvalues are
 | 
						|
!     desired to the highest feasible accuracy.
 | 
						|
!     If the call to DGEDMD is only workspace query, then
 | 
						|
!     WORK(1) contains the minimal workspace length and
 | 
						|
!     WORK(2) is the optimal workspace length. Hence, the
 | 
						|
!     leng of work is at least 2.
 | 
						|
!     See the description of LWORK.
 | 
						|
!.....
 | 
						|
!     LWORK (input) INTEGER
 | 
						|
!     The minimal length of the workspace vector WORK.
 | 
						|
!     LWORK is calculated as follows:
 | 
						|
!     If WHTSVD == 1 ::
 | 
						|
!        If JOBZ == 'V', then
 | 
						|
!        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N)).
 | 
						|
!        If JOBZ == 'N'  then
 | 
						|
!        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N)).
 | 
						|
!        Here LWORK_SVD = MAX(1,3*N+M,5*N) is the minimal
 | 
						|
!        workspace length of DGESVD.
 | 
						|
!     If WHTSVD == 2 ::
 | 
						|
!        If JOBZ == 'V', then
 | 
						|
!        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N))
 | 
						|
!        If JOBZ == 'N', then
 | 
						|
!        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N))
 | 
						|
!        Here LWORK_SVD = MAX(M, 5*N*N+4*N)+3*N*N is the
 | 
						|
!        minimal workspace length of DGESDD.
 | 
						|
!     If WHTSVD == 3 ::
 | 
						|
!        If JOBZ == 'V', then
 | 
						|
!        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N))
 | 
						|
!        If JOBZ == 'N', then
 | 
						|
!        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N))
 | 
						|
!        Here LWORK_SVD = N+M+MAX(3*N+1,
 | 
						|
!                        MAX(1,3*N+M,5*N),MAX(1,N))
 | 
						|
!        is the minimal workspace length of DGESVDQ.
 | 
						|
!     If WHTSVD == 4 ::
 | 
						|
!        If JOBZ == 'V', then
 | 
						|
!        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N))
 | 
						|
!        If JOBZ == 'N', then
 | 
						|
!        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N))
 | 
						|
!        Here LWORK_SVD = MAX(7,2*M+N,6*N+2*N*N) is the
 | 
						|
!        minimal workspace length of DGEJSV.
 | 
						|
!     The above expressions are not simplified in order to
 | 
						|
!     make the usage of WORK more transparent, and for
 | 
						|
!     easier checking. In any case, LWORK >= 2.
 | 
						|
!     If on entry LWORK = -1, then a workspace query is
 | 
						|
!     assumed and the procedure only computes the minimal
 | 
						|
!     and the optimal workspace lengths for both WORK and
 | 
						|
!     IWORK. See the descriptions of WORK and IWORK.
 | 
						|
!.....
 | 
						|
!     IWORK (workspace/output) INTEGER LIWORK-by-1 array
 | 
						|
!     Workspace that is required only if WHTSVD equals
 | 
						|
!     2 , 3 or 4. (See the description of WHTSVD).
 | 
						|
!     If on entry LWORK =-1 or LIWORK=-1, then the
 | 
						|
!     minimal length of IWORK is computed and returned in
 | 
						|
!     IWORK(1). See the description of LIWORK.
 | 
						|
!.....
 | 
						|
!     LIWORK (input) INTEGER
 | 
						|
!     The minimal length of the workspace vector IWORK.
 | 
						|
!     If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
 | 
						|
!     If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
 | 
						|
!     If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
 | 
						|
!     If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
 | 
						|
!     If on entry LIWORK = -1, then a workspace query is
 | 
						|
!     assumed and the procedure only computes the minimal
 | 
						|
!     and the optimal workspace lengths for both WORK and
 | 
						|
!     IWORK. See the descriptions of WORK and IWORK.
 | 
						|
!.....
 | 
						|
!     INFO (output) INTEGER
 | 
						|
!     -i < 0 :: On entry, the i-th argument had an
 | 
						|
!               illegal value
 | 
						|
!        = 0 :: Successful return.
 | 
						|
!        = 1 :: Void input. Quick exit (M=0 or N=0).
 | 
						|
!        = 2 :: The SVD computation of X did not converge.
 | 
						|
!               Suggestion: Check the input data and/or
 | 
						|
!               repeat with different WHTSVD.
 | 
						|
!        = 3 :: The computation of the eigenvalues did not
 | 
						|
!               converge.
 | 
						|
!        = 4 :: If data scaling was requested on input and
 | 
						|
!               the procedure found inconsistency in the data
 | 
						|
!               such that for some column index i,
 | 
						|
!               X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
 | 
						|
!               to zero if JOBS=='C'. The computation proceeds
 | 
						|
!               with original or modified data and warning
 | 
						|
!               flag is set with INFO=4.
 | 
						|
!.............................................................
 | 
						|
!.............................................................
 | 
						|
!     Parameters
 | 
						|
!     ~~~~~~~~~~
 | 
						|
      REAL(KIND=WP), PARAMETER ::  ONE = 1.0_WP
 | 
						|
      REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
 | 
						|
 | 
						|
!     Local scalars
 | 
						|
!     ~~~~~~~~~~~~~
 | 
						|
      REAL(KIND=WP) :: OFL,    ROOTSC, SCALE,  SMALL,  &
 | 
						|
                       SSUM,   XSCL1,  XSCL2
 | 
						|
      INTEGER       :: i,   j, IMINWR,  INFO1, INFO2,  &
 | 
						|
                       LWRKEV, LWRSDD, LWRSVD,         &
 | 
						|
                       LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
 | 
						|
                       MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
 | 
						|
                       OLWORK
 | 
						|
      LOGICAL       :: BADXY,  LQUERY, SCCOLX, SCCOLY, &
 | 
						|
                       WNTEX,  WNTREF, WNTRES, WNTVEC
 | 
						|
      CHARACTER     :: JOBZL,  T_OR_N
 | 
						|
      CHARACTER     :: JSVOPT
 | 
						|
 | 
						|
!     Local arrays
 | 
						|
!     ~~~~~~~~~~~~
 | 
						|
      REAL(KIND=WP) :: AB(2,2), RDUMMY(2), RDUMMY2(2)
 | 
						|
!     External functions (BLAS and LAPACK)
 | 
						|
!     ~~~~~~~~~~~~~~~~~
 | 
						|
      REAL(KIND=WP) DLANGE, DLAMCH, DNRM2
 | 
						|
      EXTERNAL      DLANGE, DLAMCH, DNRM2, IDAMAX
 | 
						|
      INTEGER       IDAMAX
 | 
						|
      LOGICAL       DISNAN, LSAME
 | 
						|
      EXTERNAL      DISNAN, LSAME
 | 
						|
 | 
						|
!     External subroutines (BLAS and LAPACK)
 | 
						|
!     ~~~~~~~~~~~~~~~~~~~~
 | 
						|
      EXTERNAL      DAXPY,  DGEMM,  DSCAL
 | 
						|
      EXTERNAL      DGEEV,  DGEJSV, DGESDD, DGESVD, DGESVDQ, &
 | 
						|
                    DLACPY, DLASCL, DLASSQ, XERBLA
 | 
						|
 | 
						|
!     Intrinsic functions
 | 
						|
!     ~~~~~~~~~~~~~~~~~~~
 | 
						|
      INTRINSIC     DBLE, INT, MAX, SQRT
 | 
						|
!............................................................
 | 
						|
!
 | 
						|
!    Test the input arguments
 | 
						|
!
 | 
						|
      WNTRES = LSAME(JOBR,'R')
 | 
						|
      SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
 | 
						|
      SCCOLY = LSAME(JOBS,'Y')
 | 
						|
      WNTVEC = LSAME(JOBZ,'V')
 | 
						|
      WNTREF = LSAME(JOBF,'R')
 | 
						|
      WNTEX  = LSAME(JOBF,'E')
 | 
						|
      INFO   = 0
 | 
						|
      LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
 | 
						|
!
 | 
						|
      IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
 | 
						|
                                  LSAME(JOBS,'N')) )   THEN
 | 
						|
          INFO = -1
 | 
						|
      ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N')        &
 | 
						|
                              .OR. LSAME(JOBZ,'F')) )  THEN
 | 
						|
          INFO = -2
 | 
						|
      ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR.  &
 | 
						|
                ( WNTRES .AND. (.NOT.WNTVEC) ) )       THEN
 | 
						|
          INFO = -3
 | 
						|
      ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR.             &
 | 
						|
                LSAME(JOBF,'N') ) )                    THEN
 | 
						|
          INFO = -4
 | 
						|
      ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR.  &
 | 
						|
                      (WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
 | 
						|
          INFO = -5
 | 
						|
      ELSE IF ( M < 0 )   THEN
 | 
						|
          INFO = -6
 | 
						|
      ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
 | 
						|
          INFO = -7
 | 
						|
      ELSE IF ( LDX < M ) THEN
 | 
						|
          INFO = -9
 | 
						|
      ELSE IF ( LDY < M ) THEN
 | 
						|
          INFO = -11
 | 
						|
      ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
 | 
						|
                ((NRNK >= 1).AND.(NRNK <=N ))) )      THEN
 | 
						|
          INFO = -12
 | 
						|
      ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) )  THEN
 | 
						|
          INFO = -13
 | 
						|
      ELSE IF ( LDZ < M ) THEN
 | 
						|
          INFO = -18
 | 
						|
      ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
 | 
						|
          INFO = -21
 | 
						|
      ELSE IF ( LDW < N ) THEN
 | 
						|
          INFO = -23
 | 
						|
      ELSE IF ( LDS < N ) THEN
 | 
						|
          INFO = -25
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( INFO == 0 ) THEN
 | 
						|
          ! Compute the minimal and the optimal workspace
 | 
						|
          ! requirements. Simulate running the code and
 | 
						|
          ! determine minimal and optimal sizes of the
 | 
						|
          ! workspace at any moment of the run.
 | 
						|
         IF ( N == 0 ) THEN
 | 
						|
             ! Quick return. All output except K is void.
 | 
						|
             ! INFO=1 signals the void input.
 | 
						|
             ! In case of a workspace query, the default
 | 
						|
             ! minimal workspace lengths are returned.
 | 
						|
            IF ( LQUERY ) THEN
 | 
						|
                IWORK(1) = 1
 | 
						|
                WORK(1)  = 2
 | 
						|
                WORK(2)  = 2
 | 
						|
            ELSE
 | 
						|
               K = 0
 | 
						|
            END IF
 | 
						|
            INFO = 1
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         MLWORK = MAX(2,N)
 | 
						|
         OLWORK = MAX(2,N)
 | 
						|
         IMINWR = 1
 | 
						|
         SELECT CASE ( WHTSVD )
 | 
						|
         CASE (1)
 | 
						|
             ! The following is specified as the minimal
 | 
						|
             ! length of WORK in the definition of DGESVD:
 | 
						|
             ! MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
 | 
						|
             MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
 | 
						|
             MLWORK = MAX(MLWORK,N + MWRSVD)
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                CALL DGESVD( 'O', 'S', M, N, X, LDX, WORK, &
 | 
						|
                           B, LDB, W, LDW, RDUMMY, -1, INFO1 )
 | 
						|
                LWRSVD = MAX( MWRSVD, INT( RDUMMY(1) ) )
 | 
						|
                OLWORK = MAX(OLWORK,N + LWRSVD)
 | 
						|
             END IF
 | 
						|
         CASE (2)
 | 
						|
             ! The following is specified as the minimal
 | 
						|
             ! length of WORK in the definition of DGESDD:
 | 
						|
             ! MWRSDD = 3*MIN(M,N)*MIN(M,N) +
 | 
						|
             ! MAX( MAX(M,N),5*MIN(M,N)*MIN(M,N)+4*MIN(M,N) )
 | 
						|
             ! IMINWR = 8*MIN(M,N)
 | 
						|
             MWRSDD = 3*MIN(M,N)*MIN(M,N) +                &
 | 
						|
              MAX( MAX(M,N),5*MIN(M,N)*MIN(M,N)+4*MIN(M,N) )
 | 
						|
             MLWORK = MAX(MLWORK,N + MWRSDD)
 | 
						|
             IMINWR = 8*MIN(M,N)
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                CALL DGESDD( 'O', M, N, X, LDX, WORK, B,     &
 | 
						|
                     LDB, W, LDW, RDUMMY, -1, IWORK, INFO1 )
 | 
						|
                LWRSDD = MAX( MWRSDD, INT( RDUMMY(1) ) )
 | 
						|
                OLWORK = MAX(OLWORK,N + LWRSDD)
 | 
						|
             END IF
 | 
						|
         CASE (3)
 | 
						|
             !LWQP3 = 3*N+1
 | 
						|
             !LWORQ = MAX(N, 1)
 | 
						|
             !MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
 | 
						|
             !MWRSVQ = N + MAX( LWQP3, MWRSVD, LWORQ ) + MAX(M,2)
 | 
						|
             !MLWORK = N +  MWRSVQ
 | 
						|
             !IMINWR = M+N-1
 | 
						|
             CALL DGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
 | 
						|
                             X, LDX, WORK, Z, LDZ, W, LDW,   &
 | 
						|
                             NUMRNK, IWORK, LIWORK, RDUMMY,  &
 | 
						|
                             -1, RDUMMY2, -1, INFO1 )
 | 
						|
             IMINWR = IWORK(1)
 | 
						|
             MWRSVQ = INT(RDUMMY(2))
 | 
						|
             MLWORK = MAX(MLWORK,N+MWRSVQ+INT(RDUMMY2(1)))
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                LWRSVQ = MAX( MWRSVQ, INT(RDUMMY(1)) )
 | 
						|
                OLWORK = MAX(OLWORK,N+LWRSVQ+INT(RDUMMY2(1)))
 | 
						|
             END IF
 | 
						|
         CASE (4)
 | 
						|
             JSVOPT = 'J'
 | 
						|
             !MWRSVJ = MAX( 7, 2*M+N, 6*N+2*N*N ) ! for JSVOPT='V'
 | 
						|
             MWRSVJ = MAX( 7, 2*M+N, 4*N+N*N, 2*N+N*N+6 )
 | 
						|
             MLWORK = MAX(MLWORK,N+MWRSVJ)
 | 
						|
             IMINWR = MAX( 3, M+3*N )
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                OLWORK =  MAX(OLWORK,N+MWRSVJ)
 | 
						|
             END IF
 | 
						|
         END SELECT
 | 
						|
         IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
 | 
						|
             JOBZL = 'V'
 | 
						|
         ELSE
 | 
						|
             JOBZL = 'N'
 | 
						|
         END IF
 | 
						|
         ! Workspace calculation to the DGEEV call
 | 
						|
         IF ( LSAME(JOBZL,'V') ) THEN
 | 
						|
             MWRKEV = MAX( 1, 4*N )
 | 
						|
         ELSE
 | 
						|
             MWRKEV = MAX( 1, 3*N )
 | 
						|
         END IF
 | 
						|
         MLWORK = MAX(MLWORK,N+MWRKEV)
 | 
						|
         IF ( LQUERY ) THEN
 | 
						|
                CALL DGEEV( 'N', JOBZL, N, S, LDS, REIG, &
 | 
						|
                    IMEIG, W, LDW, W, LDW, RDUMMY, -1, INFO1 )
 | 
						|
                LWRKEV = MAX( MWRKEV, INT(RDUMMY(1)) )
 | 
						|
                OLWORK = MAX( OLWORK, N+LWRKEV )
 | 
						|
         END IF
 | 
						|
!
 | 
						|
         IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -29
 | 
						|
         IF (  LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -27
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF( INFO /= 0 ) THEN
 | 
						|
         CALL XERBLA( 'DGEDMD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF ( LQUERY ) THEN
 | 
						|
!     Return minimal and optimal workspace sizes
 | 
						|
          IWORK(1) = IMINWR
 | 
						|
          WORK(1)  = MLWORK
 | 
						|
          WORK(2)  = OLWORK
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
!............................................................
 | 
						|
!
 | 
						|
      OFL   = DLAMCH('O')
 | 
						|
      SMALL = DLAMCH('S')
 | 
						|
      BADXY = .FALSE.
 | 
						|
!
 | 
						|
!     <1> Optional scaling of the snapshots (columns of X, Y)
 | 
						|
!     ==========================================================
 | 
						|
      IF ( SCCOLX ) THEN
 | 
						|
          ! The columns of X will be normalized.
 | 
						|
          ! To prevent overflows, the column norms of X are
 | 
						|
          ! carefully computed using DLASSQ.
 | 
						|
          K = 0
 | 
						|
          DO i = 1, N
 | 
						|
            !WORK(i) = DNRM2( M, X(1,i), 1 )
 | 
						|
            SCALE  = ZERO
 | 
						|
            CALL DLASSQ( M, X(1,i), 1, SCALE, SSUM )
 | 
						|
            IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
 | 
						|
                K    =  0
 | 
						|
                INFO = -8
 | 
						|
                CALL XERBLA('DGEDMD',-INFO)
 | 
						|
            END IF
 | 
						|
            IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
 | 
						|
               ROOTSC = SQRT(SSUM)
 | 
						|
               IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
 | 
						|
!                 Norm of X(:,i) overflows. First, X(:,i)
 | 
						|
!                 is scaled by
 | 
						|
!                 ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
 | 
						|
!                 Next, the norm of X(:,i) is stored without
 | 
						|
!                 overflow as WORK(i) = - SCALE * (ROOTSC/M),
 | 
						|
!                 the minus sign indicating the 1/M factor.
 | 
						|
!                 Scaling is performed without overflow, and
 | 
						|
!                 underflow may occur in the smallest entries
 | 
						|
!                 of X(:,i). The relative backward and forward
 | 
						|
!                 errors are small in the ell_2 norm.
 | 
						|
                  CALL DLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
 | 
						|
                               M, 1, X(1,i), M, INFO2 )
 | 
						|
                  WORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
 | 
						|
               ELSE
 | 
						|
!                 X(:,i) will be scaled to unit 2-norm
 | 
						|
                  WORK(i) =   SCALE * ROOTSC
 | 
						|
                  CALL DLASCL( 'G',0, 0, WORK(i), ONE, M, 1, &
 | 
						|
                               X(1,i), M, INFO2 )              ! LAPACK CALL
 | 
						|
!                 X(1:M,i) = (ONE/WORK(i)) * X(1:M,i)          ! INTRINSIC
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               WORK(i) = ZERO
 | 
						|
               K = K + 1
 | 
						|
            END IF
 | 
						|
          END DO
 | 
						|
          IF ( K == N ) THEN
 | 
						|
          ! All columns of X are zero. Return error code -8.
 | 
						|
          ! (the 8th input variable had an illegal value)
 | 
						|
          K = 0
 | 
						|
          INFO = -8
 | 
						|
          CALL XERBLA('DGEDMD',-INFO)
 | 
						|
          RETURN
 | 
						|
          END IF
 | 
						|
          DO i = 1, N
 | 
						|
!           Now, apply the same scaling to the columns of Y.
 | 
						|
            IF ( WORK(i) >  ZERO ) THEN
 | 
						|
                CALL DSCAL( M, ONE/WORK(i), Y(1,i), 1 )  ! BLAS CALL
 | 
						|
!               Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i)      ! INTRINSIC
 | 
						|
            ELSE IF ( WORK(i) < ZERO ) THEN
 | 
						|
                CALL DLASCL( 'G', 0, 0, -WORK(i),          &
 | 
						|
                     ONE/DBLE(M), M, 1, Y(1,i), M, INFO2 ) ! LAPACK CALL
 | 
						|
            ELSE IF ( Y(IDAMAX(M, Y(1,i),1),i )  &
 | 
						|
                                            /= ZERO ) THEN
 | 
						|
!               X(:,i) is zero vector. For consistency,
 | 
						|
!               Y(:,i) should also be zero. If Y(:,i) is not
 | 
						|
!               zero, then the data might be inconsistent or
 | 
						|
!               corrupted. If JOBS == 'C', Y(:,i) is set to
 | 
						|
!               zero and a warning flag is raised.
 | 
						|
!               The computation continues but the
 | 
						|
!               situation will be reported in the output.
 | 
						|
                BADXY = .TRUE.
 | 
						|
                IF ( LSAME(JOBS,'C')) &
 | 
						|
                CALL DSCAL( M, ZERO, Y(1,i), 1 )  ! BLAS CALL
 | 
						|
            END IF
 | 
						|
          END DO
 | 
						|
      END IF
 | 
						|
  !
 | 
						|
      IF ( SCCOLY ) THEN
 | 
						|
          ! The columns of Y will be normalized.
 | 
						|
          ! To prevent overflows, the column norms of Y are
 | 
						|
          ! carefully computed using DLASSQ.
 | 
						|
          DO i = 1, N
 | 
						|
            !WORK(i) = DNRM2( M, Y(1,i), 1 )
 | 
						|
            SCALE  = ZERO
 | 
						|
            CALL DLASSQ( M, Y(1,i), 1, SCALE, SSUM )
 | 
						|
            IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
 | 
						|
                K    =  0
 | 
						|
                INFO = -10
 | 
						|
                CALL XERBLA('DGEDMD',-INFO)
 | 
						|
            END IF
 | 
						|
            IF ( SCALE /= ZERO  .AND. (SSUM /= ZERO) ) THEN
 | 
						|
               ROOTSC = SQRT(SSUM)
 | 
						|
               IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
 | 
						|
!                 Norm of Y(:,i) overflows. First, Y(:,i)
 | 
						|
!                 is scaled by
 | 
						|
!                 ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
 | 
						|
!                 Next, the norm of Y(:,i) is stored without
 | 
						|
!                 overflow as WORK(i) = - SCALE * (ROOTSC/M),
 | 
						|
!                 the minus sign indicating the 1/M factor.
 | 
						|
!                 Scaling is performed without overflow, and
 | 
						|
!                 underflow may occur in the smallest entries
 | 
						|
!                 of Y(:,i). The relative backward and forward
 | 
						|
!                 errors are small in the ell_2 norm.
 | 
						|
                  CALL DLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
 | 
						|
                               M, 1, Y(1,i), M, INFO2 )
 | 
						|
                  WORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
 | 
						|
               ELSE
 | 
						|
!                 X(:,i) will be scaled to unit 2-norm
 | 
						|
                  WORK(i) =   SCALE * ROOTSC
 | 
						|
                  CALL DLASCL( 'G',0, 0, WORK(i), ONE, M, 1, &
 | 
						|
                               Y(1,i), M, INFO2 )              ! LAPACK CALL
 | 
						|
!                 Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i)          ! INTRINSIC
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               WORK(i) = ZERO
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
         DO i = 1, N
 | 
						|
!           Now, apply the same scaling to the columns of X.
 | 
						|
            IF ( WORK(i) >  ZERO ) THEN
 | 
						|
                CALL DSCAL( M, ONE/WORK(i), X(1,i), 1 )  ! BLAS CALL
 | 
						|
!               X(1:M,i) = (ONE/WORK(i)) * X(1:M,i)      ! INTRINSIC
 | 
						|
            ELSE IF ( WORK(i) < ZERO ) THEN
 | 
						|
                CALL DLASCL( 'G', 0, 0, -WORK(i),          &
 | 
						|
                     ONE/DBLE(M), M, 1, X(1,i), M, INFO2 ) ! LAPACK CALL
 | 
						|
            ELSE IF ( X(IDAMAX(M, X(1,i),1),i )  &
 | 
						|
                                           /= ZERO ) THEN
 | 
						|
!               Y(:,i) is zero vector.  If X(:,i) is not
 | 
						|
!               zero, then a warning flag is raised.
 | 
						|
!               The computation continues but the
 | 
						|
!               situation will be reported in the output.
 | 
						|
                BADXY = .TRUE.
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
       END IF
 | 
						|
!
 | 
						|
!     <2> SVD of the data snapshot matrix X.
 | 
						|
!     =====================================
 | 
						|
!     The left singular vectors are stored in the array X.
 | 
						|
!     The right singular vectors are in the array W.
 | 
						|
!     The array W will later on contain the eigenvectors
 | 
						|
!     of a Rayleigh quotient.
 | 
						|
      NUMRNK = N
 | 
						|
      SELECT CASE ( WHTSVD )
 | 
						|
         CASE (1)
 | 
						|
             CALL DGESVD( 'O', 'S', M, N, X, LDX, WORK, B, &
 | 
						|
                  LDB, W, LDW, WORK(N+1), LWORK-N, INFO1 ) ! LAPACK CALL
 | 
						|
             T_OR_N = 'T'
 | 
						|
         CASE (2)
 | 
						|
            CALL DGESDD( 'O', M, N, X, LDX, WORK, B, LDB, W, &
 | 
						|
                 LDW, WORK(N+1), LWORK-N, IWORK, INFO1 )   ! LAPACK CALL
 | 
						|
            T_OR_N = 'T'
 | 
						|
         CASE (3)
 | 
						|
              CALL DGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
 | 
						|
                   X, LDX, WORK, Z, LDZ, W, LDW, &
 | 
						|
                   NUMRNK, IWORK, LIWORK, WORK(N+MAX(2,M)+1),&
 | 
						|
                   LWORK-N-MAX(2,M), WORK(N+1), MAX(2,M), INFO1)     ! LAPACK CALL
 | 
						|
              CALL DLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX )   ! LAPACK CALL
 | 
						|
         T_OR_N = 'T'
 | 
						|
         CASE (4)
 | 
						|
              CALL DGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
 | 
						|
                   N, X, LDX, WORK, Z, LDZ, W, LDW, &
 | 
						|
                   WORK(N+1), LWORK-N, IWORK, INFO1 )    ! LAPACK CALL
 | 
						|
              CALL DLACPY( 'A', M, N, Z, LDZ, X, LDX )   ! LAPACK CALL
 | 
						|
              T_OR_N = 'N'
 | 
						|
              XSCL1 = WORK(N+1)
 | 
						|
              XSCL2 = WORK(N+2)
 | 
						|
              IF ( XSCL1 /=  XSCL2 ) THEN
 | 
						|
                 ! This is an exceptional situation. If the
 | 
						|
                 ! data matrices are not scaled and the
 | 
						|
                 ! largest singular value of X overflows.
 | 
						|
                 ! In that case DGEJSV can return the SVD
 | 
						|
                 ! in scaled form. The scaling factor can be used
 | 
						|
                 ! to rescale the data (X and Y).
 | 
						|
                 CALL DLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2  )
 | 
						|
              END IF
 | 
						|
      END SELECT
 | 
						|
!
 | 
						|
      IF ( INFO1 > 0 ) THEN
 | 
						|
         ! The SVD selected subroutine did not converge.
 | 
						|
         ! Return with an error code.
 | 
						|
         INFO = 2
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( WORK(1) == ZERO ) THEN
 | 
						|
          ! The largest computed singular value of (scaled)
 | 
						|
          ! X is zero. Return error code -8
 | 
						|
          ! (the 8th input variable had an illegal value).
 | 
						|
          K = 0
 | 
						|
          INFO = -8
 | 
						|
          CALL XERBLA('DGEDMD',-INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      !<3> Determine the numerical rank of the data
 | 
						|
      !    snapshots matrix X. This depends on the
 | 
						|
      !    parameters NRNK and TOL.
 | 
						|
 | 
						|
      SELECT CASE ( NRNK )
 | 
						|
          CASE ( -1 )
 | 
						|
               K = 1
 | 
						|
               DO i = 2, NUMRNK
 | 
						|
                 IF ( ( WORK(i) <= WORK(1)*TOL ) .OR. &
 | 
						|
                      ( WORK(i) <= SMALL ) ) EXIT
 | 
						|
                 K = K + 1
 | 
						|
               END DO
 | 
						|
          CASE ( -2 )
 | 
						|
               K = 1
 | 
						|
               DO i = 1, NUMRNK-1
 | 
						|
                 IF ( ( WORK(i+1) <= WORK(i)*TOL  ) .OR. &
 | 
						|
                      ( WORK(i) <= SMALL ) ) EXIT
 | 
						|
                 K = K + 1
 | 
						|
               END DO
 | 
						|
          CASE DEFAULT
 | 
						|
               K = 1
 | 
						|
               DO i = 2, NRNK
 | 
						|
                  IF ( WORK(i) <= SMALL ) EXIT
 | 
						|
                  K = K + 1
 | 
						|
               END DO
 | 
						|
          END SELECT
 | 
						|
      !   Now, U = X(1:M,1:K) is the SVD/POD basis for the
 | 
						|
      !   snapshot data in the input matrix X.
 | 
						|
 | 
						|
      !<4> Compute the Rayleigh quotient S = U^T * A * U.
 | 
						|
      !    Depending on the requested outputs, the computation
 | 
						|
      !    is organized to compute additional auxiliary
 | 
						|
      !    matrices (for the residuals and refinements).
 | 
						|
      !
 | 
						|
      !    In all formulas below, we need V_k*Sigma_k^(-1)
 | 
						|
      !    where either V_k is in W(1:N,1:K), or V_k^T is in
 | 
						|
      !    W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
 | 
						|
      IF ( LSAME(T_OR_N, 'N') ) THEN
 | 
						|
          DO i = 1, K
 | 
						|
           CALL DSCAL( N, ONE/WORK(i), W(1,i), 1 )    ! BLAS CALL
 | 
						|
           ! W(1:N,i) = (ONE/WORK(i)) * W(1:N,i)      ! INTRINSIC
 | 
						|
          END DO
 | 
						|
      ELSE
 | 
						|
          ! This non-unit stride access is due to the fact
 | 
						|
          ! that DGESVD, DGESVDQ and DGESDD return the
 | 
						|
          ! transposed matrix of the right singular vectors.
 | 
						|
          !DO i = 1, K
 | 
						|
          ! CALL DSCAL( N, ONE/WORK(i), W(i,1), LDW )    ! BLAS CALL
 | 
						|
          ! ! W(i,1:N) = (ONE/WORK(i)) * W(i,1:N)      ! INTRINSIC
 | 
						|
          !END DO
 | 
						|
          DO i = 1, K
 | 
						|
              WORK(N+i) = ONE/WORK(i)
 | 
						|
          END DO
 | 
						|
          DO j = 1, N
 | 
						|
             DO i = 1, K
 | 
						|
                 W(i,j) = (WORK(N+i))*W(i,j)
 | 
						|
             END DO
 | 
						|
          END DO
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( WNTREF ) THEN
 | 
						|
         !
 | 
						|
         ! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
 | 
						|
         ! for computing the refined Ritz vectors
 | 
						|
         ! (optionally, outside DGEDMD).
 | 
						|
          CALL DGEMM( 'N', T_OR_N, M, K, N, ONE, Y, LDY, W, &
 | 
						|
                      LDW, ZERO, Z, LDZ )                        ! BLAS CALL
 | 
						|
          ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N)))  ! INTRINSIC, for T_OR_N=='T'
 | 
						|
          ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K))             ! INTRINSIC, for T_OR_N=='N'
 | 
						|
          !
 | 
						|
          ! At this point Z contains
 | 
						|
          ! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
 | 
						|
          ! this is needed for computing the residuals.
 | 
						|
          ! This matrix is  returned in the array B and
 | 
						|
          ! it can be used to compute refined Ritz vectors.
 | 
						|
          CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB )   ! BLAS CALL
 | 
						|
          ! B(1:M,1:K) = Z(1:M,1:K)                  ! INTRINSIC
 | 
						|
 | 
						|
          CALL DGEMM( 'T', 'N', K, K, M, ONE, X, LDX, Z, &
 | 
						|
                      LDZ, ZERO, S, LDS )                        ! BLAS CALL
 | 
						|
          ! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC
 | 
						|
          ! At this point S = U^T * A * U is the Rayleigh quotient.
 | 
						|
      ELSE
 | 
						|
        ! A * U(:,1:K) is not explicitly needed and the
 | 
						|
        ! computation is organized differently. The Rayleigh
 | 
						|
        ! quotient is computed more efficiently.
 | 
						|
        CALL DGEMM( 'T', 'N', K, N, M, ONE, X, LDX, Y, LDY, &
 | 
						|
                   ZERO, Z, LDZ )                                   ! BLAS CALL
 | 
						|
        ! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) )  ! INTRINSIC
 | 
						|
        ! In the two DGEMM calls here, can use K for LDZ.
 | 
						|
        CALL DGEMM( 'N', T_OR_N, K, K, N, ONE, Z, LDZ, W, &
 | 
						|
                    LDW, ZERO, S, LDS )                         ! BLAS CALL
 | 
						|
        ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
 | 
						|
        ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K)))          ! INTRINSIC, for T_OR_N=='N'
 | 
						|
        ! At this point S = U^T * A * U is the Rayleigh quotient.
 | 
						|
        ! If the residuals are requested, save scaled V_k into Z.
 | 
						|
        ! Recall that V_k or V_k^T is stored in W.
 | 
						|
        IF ( WNTRES .OR. WNTEX ) THEN
 | 
						|
          IF ( LSAME(T_OR_N, 'N') ) THEN
 | 
						|
              CALL DLACPY( 'A', N, K, W, LDW, Z, LDZ )
 | 
						|
          ELSE
 | 
						|
              CALL DLACPY( 'A', K, N, W, LDW, Z, LDZ )
 | 
						|
          END IF
 | 
						|
        END IF
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      !<5> Compute the Ritz values and (if requested) the
 | 
						|
      !   right eigenvectors of the Rayleigh quotient.
 | 
						|
      !
 | 
						|
      CALL DGEEV( 'N', JOBZL, K, S, LDS, REIG, IMEIG, W, &
 | 
						|
                  LDW, W, LDW, WORK(N+1), LWORK-N, INFO1 )   ! LAPACK CALL
 | 
						|
      !
 | 
						|
      ! W(1:K,1:K) contains the eigenvectors of the Rayleigh
 | 
						|
      ! quotient. Even in the case of complex spectrum, all
 | 
						|
      ! computation is done in real arithmetic. REIG and
 | 
						|
      ! IMEIG are the real and the imaginary parts of the
 | 
						|
      ! eigenvalues, so that the spectrum is given as
 | 
						|
      ! REIG(:) + sqrt(-1)*IMEIG(:). Complex conjugate pairs
 | 
						|
      ! are listed at consecutive positions. For such a
 | 
						|
      ! complex conjugate pair of the eigenvalues, the
 | 
						|
      ! corresponding eigenvectors are also a complex
 | 
						|
      ! conjugate pair with the real and imaginary parts
 | 
						|
      ! stored column-wise in W at the corresponding
 | 
						|
      ! consecutive column indices. See the description of Z.
 | 
						|
      ! Also, see the description of DGEEV.
 | 
						|
      IF ( INFO1 > 0 ) THEN
 | 
						|
         ! DGEEV failed to compute the eigenvalues and
 | 
						|
         ! eigenvectors of the Rayleigh quotient.
 | 
						|
         INFO = 3
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      ! <6> Compute the eigenvectors (if requested) and,
 | 
						|
      ! the residuals (if requested).
 | 
						|
      !
 | 
						|
      IF ( WNTVEC .OR. WNTEX ) THEN
 | 
						|
      IF ( WNTRES ) THEN
 | 
						|
          IF ( WNTREF ) THEN
 | 
						|
            ! Here, if the refinement is requested, we have
 | 
						|
            ! A*U(:,1:K) already computed and stored in Z.
 | 
						|
            ! For the residuals, need Y = A * U(:,1;K) * W.
 | 
						|
            CALL DGEMM( 'N', 'N', M, K, K, ONE, Z, LDZ, W, &
 | 
						|
                       LDW, ZERO, Y, LDY )               ! BLAS CALL
 | 
						|
            ! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K)       ! INTRINSIC
 | 
						|
            ! This frees Z; Y contains A * U(:,1:K) * W.
 | 
						|
          ELSE
 | 
						|
            ! Compute S = V_k * Sigma_k^(-1) * W, where
 | 
						|
            ! V_k * Sigma_k^(-1) is stored in Z
 | 
						|
            CALL DGEMM( T_OR_N, 'N', N, K, K, ONE, Z, LDZ, &
 | 
						|
                       W, LDW, ZERO, S, LDS)
 | 
						|
            ! Then, compute Z = Y * S =
 | 
						|
            ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
 | 
						|
            ! = A * U(:,1:K) * W(1:K,1:K)
 | 
						|
            CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
 | 
						|
                       LDS, ZERO, Z, LDZ)
 | 
						|
            ! Save a copy of Z into Y and free Z for holding
 | 
						|
            ! the Ritz vectors.
 | 
						|
            CALL DLACPY( 'A', M, K, Z, LDZ, Y, LDY )
 | 
						|
            IF ( WNTEX ) CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB )
 | 
						|
          END IF
 | 
						|
      ELSE IF ( WNTEX ) THEN
 | 
						|
          ! Compute S = V_k * Sigma_k^(-1) * W, where
 | 
						|
            ! V_k * Sigma_k^(-1) is stored in Z
 | 
						|
            CALL DGEMM( T_OR_N, 'N', N, K, K, ONE, Z, LDZ, &
 | 
						|
                       W, LDW, ZERO, S, LDS )
 | 
						|
            ! Then, compute Z = Y * S =
 | 
						|
            ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
 | 
						|
            ! = A * U(:,1:K) * W(1:K,1:K)
 | 
						|
            CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
 | 
						|
                       LDS, ZERO, B, LDB )
 | 
						|
            ! The above call replaces the following two calls
 | 
						|
            ! that were used in the developing-testing phase.
 | 
						|
            ! CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
 | 
						|
            !           LDS, ZERO, Z, LDZ)
 | 
						|
            ! Save a copy of Z into B and free Z for holding
 | 
						|
            ! the Ritz vectors.
 | 
						|
            ! CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB )
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      ! Compute the real form of the Ritz vectors
 | 
						|
      IF ( WNTVEC ) CALL DGEMM( 'N', 'N', M, K, K, ONE, X, LDX, W, LDW, &
 | 
						|
                   ZERO, Z, LDZ )                           ! BLAS CALL
 | 
						|
      ! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K))         ! INTRINSIC
 | 
						|
!
 | 
						|
      IF ( WNTRES ) THEN
 | 
						|
         i = 1
 | 
						|
         DO WHILE ( i <= K )
 | 
						|
            IF ( IMEIG(i) == ZERO ) THEN
 | 
						|
                ! have a real eigenvalue with real eigenvector
 | 
						|
                CALL DAXPY( M, -REIG(i), Z(1,i), 1, Y(1,i), 1 )       ! BLAS CALL
 | 
						|
                ! Y(1:M,i) = Y(1:M,i) - REIG(i) * Z(1:M,i)            ! INTRINSIC
 | 
						|
                RES(i) = DNRM2( M, Y(1,i), 1)                         ! BLAS CALL
 | 
						|
                i = i + 1
 | 
						|
            ELSE
 | 
						|
               ! Have a complex conjugate pair
 | 
						|
               ! REIG(i) +- sqrt(-1)*IMEIG(i).
 | 
						|
               ! Since all computation is done in real
 | 
						|
               ! arithmetic, the formula for the residual
 | 
						|
               ! is recast for real representation of the
 | 
						|
               ! complex conjugate eigenpair. See the
 | 
						|
               ! description of RES.
 | 
						|
               AB(1,1) =  REIG(i)
 | 
						|
               AB(2,1) = -IMEIG(i)
 | 
						|
               AB(1,2) =  IMEIG(i)
 | 
						|
               AB(2,2) =  REIG(i)
 | 
						|
               CALL DGEMM( 'N', 'N', M, 2, 2, -ONE, Z(1,i), &
 | 
						|
                           LDZ, AB, 2, ONE, Y(1,i), LDY )          ! BLAS CALL
 | 
						|
               ! Y(1:M,i:i+1) = Y(1:M,i:i+1) - Z(1:M,i:i+1) * AB   ! INTRINSIC
 | 
						|
               RES(i)   = DLANGE( 'F', M, 2, Y(1,i), LDY, &
 | 
						|
                                  WORK(N+1) )                      ! LAPACK CALL
 | 
						|
               RES(i+1) = RES(i)
 | 
						|
               i = i + 2
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( WHTSVD == 4 ) THEN
 | 
						|
          WORK(N+1) = XSCL1
 | 
						|
          WORK(N+2) = XSCL2
 | 
						|
      END IF
 | 
						|
!
 | 
						|
!     Successful exit.
 | 
						|
      IF ( .NOT. BADXY ) THEN
 | 
						|
         INFO = 0
 | 
						|
      ELSE
 | 
						|
         ! A warning on possible data inconsistency.
 | 
						|
         ! This should be a rare event.
 | 
						|
         INFO = 4
 | 
						|
      END IF
 | 
						|
!............................................................
 | 
						|
      RETURN
 | 
						|
!     ......
 | 
						|
      END SUBROUTINE DGEDMD
 | 
						|
 |