330 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			330 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPBSTF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPBSTF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbstf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbstf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbstf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, KD, LDAB, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            AB( LDAB, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPBSTF computes a split Cholesky factorization of a complex
 | 
						|
*> Hermitian positive definite band matrix A.
 | 
						|
*>
 | 
						|
*> This routine is designed to be used in conjunction with CHBGST.
 | 
						|
*>
 | 
						|
*> The factorization has the form  A = S**H*S  where S is a band matrix
 | 
						|
*> of the same bandwidth as A and the following structure:
 | 
						|
*>
 | 
						|
*>   S = ( U    )
 | 
						|
*>       ( M  L )
 | 
						|
*>
 | 
						|
*> where U is upper triangular of order m = (n+kd)/2, and L is lower
 | 
						|
*> triangular of order n-m.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX array, dimension (LDAB,N)
 | 
						|
*>          On entry, the upper or lower triangle of the Hermitian band
 | 
						|
*>          matrix A, stored in the first kd+1 rows of the array.  The
 | 
						|
*>          j-th column of A is stored in the j-th column of the array AB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the factor S from the split Cholesky
 | 
						|
*>          factorization A = S**H*S. See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= KD+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = i, the factorization could not be completed,
 | 
						|
*>               because the updated element a(i,i) was negative; the
 | 
						|
*>               matrix A is not positive definite.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The band storage scheme is illustrated by the following example, when
 | 
						|
*>  N = 7, KD = 2:
 | 
						|
*>
 | 
						|
*>  S = ( s11  s12  s13                     )
 | 
						|
*>      (      s22  s23  s24                )
 | 
						|
*>      (           s33  s34                )
 | 
						|
*>      (                s44                )
 | 
						|
*>      (           s53  s54  s55           )
 | 
						|
*>      (                s64  s65  s66      )
 | 
						|
*>      (                     s75  s76  s77 )
 | 
						|
*>
 | 
						|
*>  If UPLO = 'U', the array AB holds:
 | 
						|
*>
 | 
						|
*>  on entry:                          on exit:
 | 
						|
*>
 | 
						|
*>   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53**H s64**H s75**H
 | 
						|
*>   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54**H s65**H s76**H
 | 
						|
*>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55    s66    s77
 | 
						|
*>
 | 
						|
*>  If UPLO = 'L', the array AB holds:
 | 
						|
*>
 | 
						|
*>  on entry:                          on exit:
 | 
						|
*>
 | 
						|
*>  a11  a22  a33  a44  a55  a66  a77  s11    s22    s33    s44  s55  s66  s77
 | 
						|
*>  a21  a32  a43  a54  a65  a76   *   s12**H s23**H s34**H s54  s65  s76   *
 | 
						|
*>  a31  a42  a53  a64  a64   *    *   s13**H s24**H s53    s64  s75   *    *
 | 
						|
*>
 | 
						|
*>  Array elements marked * are not used by the routine; s12**H denotes
 | 
						|
*>  conjg(s12); the diagonal elements of S are real.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, KD, LDAB, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            AB( LDAB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, KLD, KM, M
 | 
						|
      REAL               AJJ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CHER, CLACGV, CSSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KD.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDAB.LT.KD+1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPBSTF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      KLD = MAX( 1, LDAB-1 )
 | 
						|
*
 | 
						|
*     Set the splitting point m.
 | 
						|
*
 | 
						|
      M = ( N+KD ) / 2
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
 | 
						|
*
 | 
						|
         DO 10 J = N, M + 1, -1
 | 
						|
*
 | 
						|
*           Compute s(j,j) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = REAL( AB( KD+1, J ) )
 | 
						|
            IF( AJJ.LE.ZERO ) THEN
 | 
						|
               AB( KD+1, J ) = AJJ
 | 
						|
               GO TO 50
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            AB( KD+1, J ) = AJJ
 | 
						|
            KM = MIN( J-1, KD )
 | 
						|
*
 | 
						|
*           Compute elements j-km:j-1 of the j-th column and update the
 | 
						|
*           the leading submatrix within the band.
 | 
						|
*
 | 
						|
            CALL CSSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
 | 
						|
            CALL CHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
 | 
						|
     $                 AB( KD+1, J-KM ), KLD )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
 | 
						|
*
 | 
						|
         DO 20 J = 1, M
 | 
						|
*
 | 
						|
*           Compute s(j,j) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = REAL( AB( KD+1, J ) )
 | 
						|
            IF( AJJ.LE.ZERO ) THEN
 | 
						|
               AB( KD+1, J ) = AJJ
 | 
						|
               GO TO 50
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            AB( KD+1, J ) = AJJ
 | 
						|
            KM = MIN( KD, M-J )
 | 
						|
*
 | 
						|
*           Compute elements j+1:j+km of the j-th row and update the
 | 
						|
*           trailing submatrix within the band.
 | 
						|
*
 | 
						|
            IF( KM.GT.0 ) THEN
 | 
						|
               CALL CSSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
 | 
						|
               CALL CLACGV( KM, AB( KD, J+1 ), KLD )
 | 
						|
               CALL CHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
 | 
						|
     $                    AB( KD+1, J+1 ), KLD )
 | 
						|
               CALL CLACGV( KM, AB( KD, J+1 ), KLD )
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
 | 
						|
*
 | 
						|
         DO 30 J = N, M + 1, -1
 | 
						|
*
 | 
						|
*           Compute s(j,j) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = REAL( AB( 1, J ) )
 | 
						|
            IF( AJJ.LE.ZERO ) THEN
 | 
						|
               AB( 1, J ) = AJJ
 | 
						|
               GO TO 50
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            AB( 1, J ) = AJJ
 | 
						|
            KM = MIN( J-1, KD )
 | 
						|
*
 | 
						|
*           Compute elements j-km:j-1 of the j-th row and update the
 | 
						|
*           trailing submatrix within the band.
 | 
						|
*
 | 
						|
            CALL CSSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
 | 
						|
            CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
 | 
						|
            CALL CHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
 | 
						|
     $                 AB( 1, J-KM ), KLD )
 | 
						|
            CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
 | 
						|
*
 | 
						|
         DO 40 J = 1, M
 | 
						|
*
 | 
						|
*           Compute s(j,j) and test for non-positive-definiteness.
 | 
						|
*
 | 
						|
            AJJ = REAL( AB( 1, J ) )
 | 
						|
            IF( AJJ.LE.ZERO ) THEN
 | 
						|
               AB( 1, J ) = AJJ
 | 
						|
               GO TO 50
 | 
						|
            END IF
 | 
						|
            AJJ = SQRT( AJJ )
 | 
						|
            AB( 1, J ) = AJJ
 | 
						|
            KM = MIN( KD, M-J )
 | 
						|
*
 | 
						|
*           Compute elements j+1:j+km of the j-th column and update the
 | 
						|
*           trailing submatrix within the band.
 | 
						|
*
 | 
						|
            IF( KM.GT.0 ) THEN
 | 
						|
               CALL CSSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
 | 
						|
               CALL CHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
 | 
						|
     $                    AB( 1, J+1 ), KLD )
 | 
						|
            END IF
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      INFO = J
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPBSTF
 | 
						|
*
 | 
						|
      END
 |