305 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			305 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGGBAK
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGGBAK + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggbak.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggbak.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggbak.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 | 
						|
*                          LDV, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOB, SIDE
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDV, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               LSCALE( * ), RSCALE( * )
 | 
						|
*       COMPLEX            V( LDV, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGGBAK forms the right or left eigenvectors of a complex generalized
 | 
						|
*> eigenvalue problem A*x = lambda*B*x, by backward transformation on
 | 
						|
*> the computed eigenvectors of the balanced pair of matrices output by
 | 
						|
*> CGGBAL.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>          Specifies the type of backward transformation required:
 | 
						|
*>          = 'N':  do nothing, return immediately;
 | 
						|
*>          = 'P':  do backward transformation for permutation only;
 | 
						|
*>          = 'S':  do backward transformation for scaling only;
 | 
						|
*>          = 'B':  do backward transformations for both permutation and
 | 
						|
*>                  scaling.
 | 
						|
*>          JOB must be the same as the argument JOB supplied to CGGBAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'R':  V contains right eigenvectors;
 | 
						|
*>          = 'L':  V contains left eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows of the matrix V.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>          The integers ILO and IHI determined by CGGBAL.
 | 
						|
*>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LSCALE
 | 
						|
*> \verbatim
 | 
						|
*>          LSCALE is REAL array, dimension (N)
 | 
						|
*>          Details of the permutations and/or scaling factors applied
 | 
						|
*>          to the left side of A and B, as returned by CGGBAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RSCALE
 | 
						|
*> \verbatim
 | 
						|
*>          RSCALE is REAL array, dimension (N)
 | 
						|
*>          Details of the permutations and/or scaling factors applied
 | 
						|
*>          to the right side of A and B, as returned by CGGBAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of columns of the matrix V.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX array, dimension (LDV,M)
 | 
						|
*>          On entry, the matrix of right or left eigenvectors to be
 | 
						|
*>          transformed, as returned by CTGEVC.
 | 
						|
*>          On exit, V is overwritten by the transformed eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the matrix V. LDV >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexGBcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  See R.C. Ward, Balancing the generalized eigenvalue problem,
 | 
						|
*>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 | 
						|
     $                   LDV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOB, SIDE
 | 
						|
      INTEGER            IHI, ILO, INFO, LDV, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               LSCALE( * ), RSCALE( * )
 | 
						|
      COMPLEX            V( LDV, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LEFTV, RIGHTV
 | 
						|
      INTEGER            I, K
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CSSCAL, CSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      RIGHTV = LSAME( SIDE, 'R' )
 | 
						|
      LEFTV = LSAME( SIDE, 'L' )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
 | 
						|
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( ILO.LT.1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
 | 
						|
     $   THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGGBAK', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
      IF( M.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
      IF( LSAME( JOB, 'N' ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( ILO.EQ.IHI )
 | 
						|
     $   GO TO 30
 | 
						|
*
 | 
						|
*     Backward balance
 | 
						|
*
 | 
						|
      IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
 | 
						|
*
 | 
						|
*        Backward transformation on right eigenvectors
 | 
						|
*
 | 
						|
         IF( RIGHTV ) THEN
 | 
						|
            DO 10 I = ILO, IHI
 | 
						|
               CALL CSSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
 | 
						|
   10       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Backward transformation on left eigenvectors
 | 
						|
*
 | 
						|
         IF( LEFTV ) THEN
 | 
						|
            DO 20 I = ILO, IHI
 | 
						|
               CALL CSSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Backward permutation
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
 | 
						|
*
 | 
						|
*        Backward permutation on right eigenvectors
 | 
						|
*
 | 
						|
         IF( RIGHTV ) THEN
 | 
						|
            IF( ILO.EQ.1 )
 | 
						|
     $         GO TO 50
 | 
						|
            DO 40 I = ILO - 1, 1, -1
 | 
						|
               K = INT( RSCALE( I ) )
 | 
						|
               IF( K.EQ.I )
 | 
						|
     $            GO TO 40
 | 
						|
               CALL CSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | 
						|
   40       CONTINUE
 | 
						|
*
 | 
						|
   50       CONTINUE
 | 
						|
            IF( IHI.EQ.N )
 | 
						|
     $         GO TO 70
 | 
						|
            DO 60 I = IHI + 1, N
 | 
						|
               K = INT( RSCALE( I ) )
 | 
						|
               IF( K.EQ.I )
 | 
						|
     $            GO TO 60
 | 
						|
               CALL CSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Backward permutation on left eigenvectors
 | 
						|
*
 | 
						|
   70    CONTINUE
 | 
						|
         IF( LEFTV ) THEN
 | 
						|
            IF( ILO.EQ.1 )
 | 
						|
     $         GO TO 90
 | 
						|
            DO 80 I = ILO - 1, 1, -1
 | 
						|
               K = INT( LSCALE( I ) )
 | 
						|
               IF( K.EQ.I )
 | 
						|
     $            GO TO 80
 | 
						|
               CALL CSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | 
						|
   80       CONTINUE
 | 
						|
*
 | 
						|
   90       CONTINUE
 | 
						|
            IF( IHI.EQ.N )
 | 
						|
     $         GO TO 110
 | 
						|
            DO 100 I = IHI + 1, N
 | 
						|
               K = INT( LSCALE( I ) )
 | 
						|
               IF( K.EQ.I )
 | 
						|
     $            GO TO 100
 | 
						|
               CALL CSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGGBAK
 | 
						|
*
 | 
						|
      END
 |