380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORGTSQR_ROW
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORGTSQR_ROW + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtsqr_row.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtsqr_row.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtsqr_row.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
 | |
| *      $                         LWORK, INFO )
 | |
| *       IMPLICIT NONE
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL              A( LDA, * ), T( LDT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SORGTSQR_ROW generates an M-by-N real matrix Q_out with
 | |
| *> orthonormal columns from the output of SLATSQR. These N orthonormal
 | |
| *> columns are the first N columns of a product of complex unitary
 | |
| *> matrices Q(k)_in of order M, which are returned by SLATSQR in
 | |
| *> a special format.
 | |
| *>
 | |
| *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
 | |
| *>
 | |
| *> The input matrices Q(k)_in are stored in row and column blocks in A.
 | |
| *> See the documentation of SLATSQR for more details on the format of
 | |
| *> Q(k)_in, where each Q(k)_in is represented by block Householder
 | |
| *> transformations. This routine calls an auxiliary routine SLARFB_GETT,
 | |
| *> where the computation is performed on each individual block. The
 | |
| *> algorithm first sweeps NB-sized column blocks from the right to left
 | |
| *> starting in the bottom row block and continues to the top row block
 | |
| *> (hence _ROW in the routine name). This sweep is in reverse order of
 | |
| *> the order in which SLATSQR generates the output blocks.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MB
 | |
| *> \verbatim
 | |
| *>          MB is INTEGER
 | |
| *>          The row block size used by SLATSQR to return
 | |
| *>          arrays A and T. MB > N.
 | |
| *>          (Note that if MB > M, then M is used instead of MB
 | |
| *>          as the row block size).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The column block size used by SLATSQR to return
 | |
| *>          arrays A and T. NB >= 1.
 | |
| *>          (Note that if NB > N, then N is used instead of NB
 | |
| *>          as the column block size).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>
 | |
| *>          On entry:
 | |
| *>
 | |
| *>             The elements on and above the diagonal are not used as
 | |
| *>             input. The elements below the diagonal represent the unit
 | |
| *>             lower-trapezoidal blocked matrix V computed by SLATSQR
 | |
| *>             that defines the input matrices Q_in(k) (ones on the
 | |
| *>             diagonal are not stored). See SLATSQR for more details.
 | |
| *>
 | |
| *>          On exit:
 | |
| *>
 | |
| *>             The array A contains an M-by-N orthonormal matrix Q_out,
 | |
| *>             i.e the columns of A are orthogonal unit vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array,
 | |
| *>          dimension (LDT, N * NIRB)
 | |
| *>          where NIRB = Number_of_input_row_blocks
 | |
| *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
 | |
| *>          Let NICB = Number_of_input_col_blocks
 | |
| *>                   = CEIL(N/NB)
 | |
| *>
 | |
| *>          The upper-triangular block reflectors used to define the
 | |
| *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
 | |
| *>          reflectors are stored in compact form in NIRB block
 | |
| *>          reflector sequences. Each of the NIRB block reflector
 | |
| *>          sequences is stored in a larger NB-by-N column block of T
 | |
| *>          and consists of NICB smaller NB-by-NB upper-triangular
 | |
| *>          column blocks. See SLATSQR for more details on the format
 | |
| *>          of T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.
 | |
| *>          LDT >= max(1,min(NB,N)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          (workspace) REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          The dimension of the array WORK.
 | |
| *>          LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
 | |
| *>          where NBLOCAL=MIN(NB,N).
 | |
| *>          If LWORK = -1, then a workspace query is assumed.
 | |
| *>          The routine only calculates the optimal size of the WORK
 | |
| *>          array, returns this value as the first entry of the WORK
 | |
| *>          array, and no error message related to LWORK is issued
 | |
| *>          by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup sigleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> November 2020, Igor Kozachenko,
 | |
| *>                Computer Science Division,
 | |
| *>                University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
 | |
|      $                         LWORK, INFO )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL              A( LDA, * ), T( LDT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
 | |
|      $                   LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
 | |
|      $                   KB, KB_LAST, KNB, MB1
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               DUMMY( 1, 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARFB_GETT, SLASET, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY  = LWORK.EQ.-1
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( MB.LE.N ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NB.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
| *
 | |
|       NBLOCAL = MIN( NB, N )
 | |
| *
 | |
| *     Determine the workspace size.
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
 | |
|       END IF
 | |
| *
 | |
| *     Handle error in the input parameters and handle the workspace query.
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORGTSQR_ROW', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF ( LQUERY ) THEN
 | |
|          WORK( 1 ) = REAL( LWORKOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N ).EQ.0 ) THEN
 | |
|          WORK( 1 ) = REAL( LWORKOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     (0) Set the upper-triangular part of the matrix A to zero and
 | |
| *     its diagonal elements to one.
 | |
| *
 | |
|       CALL SLASET('U', M, N, ZERO, ONE, A, LDA )
 | |
| *
 | |
| *     KB_LAST is the column index of the last column block reflector
 | |
| *     in the matrices T and V.
 | |
| *
 | |
|       KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
 | |
| *
 | |
| *
 | |
| *     (1) Bottom-up loop over row blocks of A, except the top row block.
 | |
| *     NOTE: If MB>=M, then the loop is never executed.
 | |
| *
 | |
|       IF ( MB.LT.M ) THEN
 | |
| *
 | |
| *        MB2 is the row blocking size for the row blocks before the
 | |
| *        first top row block in the matrix A. IB is the row index for
 | |
| *        the row blocks in the matrix A before the first top row block.
 | |
| *        IB_BOTTOM is the row index for the last bottom row block
 | |
| *        in the matrix A. JB_T is the column index of the corresponding
 | |
| *        column block in the matrix T.
 | |
| *
 | |
| *        Initialize variables.
 | |
| *
 | |
| *        NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
 | |
| *        including the first row block.
 | |
| *
 | |
|          MB2 = MB - N
 | |
|          M_PLUS_ONE = M + 1
 | |
|          ITMP = ( M - MB - 1 ) / MB2
 | |
|          IB_BOTTOM = ITMP * MB2 + MB + 1
 | |
|          NUM_ALL_ROW_BLOCKS = ITMP + 2
 | |
|          JB_T = NUM_ALL_ROW_BLOCKS * N + 1
 | |
| *
 | |
|          DO IB = IB_BOTTOM, MB+1, -MB2
 | |
| *
 | |
| *           Determine the block size IMB for the current row block
 | |
| *           in the matrix A.
 | |
| *
 | |
|             IMB = MIN( M_PLUS_ONE - IB, MB2 )
 | |
| *
 | |
| *           Determine the column index JB_T for the current column block
 | |
| *           in the matrix T.
 | |
| *
 | |
|             JB_T = JB_T - N
 | |
| *
 | |
| *           Apply column blocks of H in the row block from right to left.
 | |
| *
 | |
| *           KB is the column index of the current column block reflector
 | |
| *           in the matrices T and V.
 | |
| *
 | |
|             DO KB = KB_LAST, 1, -NBLOCAL
 | |
| *
 | |
| *              Determine the size of the current column block KNB in
 | |
| *              the matrices T and V.
 | |
| *
 | |
|                KNB = MIN( NBLOCAL, N - KB + 1 )
 | |
| *
 | |
|                CALL SLARFB_GETT( 'I', IMB, N-KB+1, KNB,
 | |
|      $                     T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
 | |
|      $                     A( IB, KB ), LDA, WORK, KNB )
 | |
| *
 | |
|             END DO
 | |
| *
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     (2) Top row block of A.
 | |
| *     NOTE: If MB>=M, then we have only one row block of A of size M
 | |
| *     and we work on the entire matrix A.
 | |
| *
 | |
|       MB1 = MIN( MB, M )
 | |
| *
 | |
| *     Apply column blocks of H in the top row block from right to left.
 | |
| *
 | |
| *     KB is the column index of the current block reflector in
 | |
| *     the matrices T and V.
 | |
| *
 | |
|       DO KB = KB_LAST, 1, -NBLOCAL
 | |
| *
 | |
| *        Determine the size of the current column block KNB in
 | |
| *        the matrices T and V.
 | |
| *
 | |
|          KNB = MIN( NBLOCAL, N - KB + 1 )
 | |
| *
 | |
|          IF( MB1-KB-KNB+1.EQ.0 ) THEN
 | |
| *
 | |
| *           In SLARFB_GETT parameters, when M=0, then the matrix B
 | |
| *           does not exist, hence we need to pass a dummy array
 | |
| *           reference DUMMY(1,1) to B with LDDUMMY=1.
 | |
| *
 | |
|             CALL SLARFB_GETT( 'N', 0, N-KB+1, KNB,
 | |
|      $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
 | |
|      $                        DUMMY( 1, 1 ), 1, WORK, KNB )
 | |
|          ELSE
 | |
|             CALL SLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
 | |
|      $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
 | |
|      $                        A( KB+KNB, KB), LDA, WORK, KNB )
 | |
| 
 | |
|          END IF
 | |
| *
 | |
|       END DO
 | |
| *
 | |
|       WORK( 1 ) = REAL( LWORKOPT )
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORGTSQR_ROW
 | |
| *
 | |
|       END
 |