196 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORG2L + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorg2l.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorg2l.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorg2l.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, K, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SORG2L generates an m by n real matrix Q with orthonormal columns,
 | |
| *> which is defined as the last n columns of a product of k elementary
 | |
| *> reflectors of order m
 | |
| *>
 | |
| *>       Q  =  H(k) . . . H(2) H(1)
 | |
| *>
 | |
| *> as returned by SGEQLF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix Q. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix Q. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines the
 | |
| *>          matrix Q. N >= K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the (n-k+i)-th column must contain the vector which
 | |
| *>          defines the elementary reflector H(i), for i = 1,2,...,k, as
 | |
| *>          returned by SGEQLF in the last k columns of its array
 | |
| *>          argument A.
 | |
| *>          On exit, the m by n matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The first dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (K)
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i), as returned by SGEQLF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument has an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, K, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, II, J, L
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARF, SSCAL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORG2L', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Initialise columns 1:n-k to columns of the unit matrix
 | |
| *
 | |
|       DO 20 J = 1, N - K
 | |
|          DO 10 L = 1, M
 | |
|             A( L, J ) = ZERO
 | |
|    10    CONTINUE
 | |
|          A( M-N+J, J ) = ONE
 | |
|    20 CONTINUE
 | |
| *
 | |
|       DO 40 I = 1, K
 | |
|          II = N - K + I
 | |
| *
 | |
| *        Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
 | |
| *
 | |
|          A( M-N+II, II ) = ONE
 | |
|          CALL SLARF( 'Left', M-N+II, II-1, A( 1, II ), 1, TAU( I ), A,
 | |
|      $               LDA, WORK )
 | |
|          CALL SSCAL( M-N+II-1, -TAU( I ), A( 1, II ), 1 )
 | |
|          A( M-N+II, II ) = ONE - TAU( I )
 | |
| *
 | |
| *        Set A(m-k+i+1:m,n-k+i) to zero
 | |
| *
 | |
|          DO 30 L = M - N + II + 1, M
 | |
|             A( L, II ) = ZERO
 | |
|    30    CONTINUE
 | |
|    40 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORG2L
 | |
| *
 | |
|       END
 |