790 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			790 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SBDSVDX
 | ||
| *
 | ||
| *  =========== DOCUMENTATION ===========
 | ||
| *
 | ||
| * Online html documentation available at
 | ||
| *            http://www.netlib.org/lapack/explore-html/
 | ||
| *
 | ||
| *> \htmlonly
 | ||
| *> Download SBDSVDX + dependencies
 | ||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsvdx.f">
 | ||
| *> [TGZ]</a>
 | ||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsvdx.f">
 | ||
| *> [ZIP]</a>
 | ||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsvdx.f">
 | ||
| *> [TXT]</a>
 | ||
| *> \endhtmlonly
 | ||
| *
 | ||
| *  Definition:
 | ||
| *  ===========
 | ||
| *
 | ||
| *     SUBROUTINE SBDSVDX( UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | ||
| *    $                    NS, S, Z, LDZ, WORK, IWORK, INFO )
 | ||
| *
 | ||
| *     .. Scalar Arguments ..
 | ||
| *      CHARACTER          JOBZ, RANGE, UPLO
 | ||
| *      INTEGER            IL, INFO, IU, LDZ, N, NS
 | ||
| *      REAL               VL, VU
 | ||
| *     ..
 | ||
| *     .. Array Arguments ..
 | ||
| *      INTEGER            IWORK( * )
 | ||
| *      REAL               D( * ), E( * ), S( * ), WORK( * ),
 | ||
| *                         Z( LDZ, * )
 | ||
| *       ..
 | ||
| *
 | ||
| *> \par Purpose:
 | ||
| *  =============
 | ||
| *>
 | ||
| *> \verbatim
 | ||
| *>
 | ||
| *>  SBDSVDX computes the singular value decomposition (SVD) of a real
 | ||
| *>  N-by-N (upper or lower) bidiagonal matrix B, B = U * S * VT,
 | ||
| *>  where S is a diagonal matrix with non-negative diagonal elements
 | ||
| *>  (the singular values of B), and U and VT are orthogonal matrices
 | ||
| *>  of left and right singular vectors, respectively.
 | ||
| *>
 | ||
| *>  Given an upper bidiagonal B with diagonal D = [ d_1 d_2 ... d_N ]
 | ||
| *>  and superdiagonal E = [ e_1 e_2 ... e_N-1 ], SBDSVDX computes the
 | ||
| *>  singular value decompositon of B through the eigenvalues and
 | ||
| *>  eigenvectors of the N*2-by-N*2 tridiagonal matrix
 | ||
| *>
 | ||
| *>        |  0  d_1                |
 | ||
| *>        | d_1  0  e_1            |
 | ||
| *>  TGK = |     e_1  0  d_2        |
 | ||
| *>        |         d_2  .   .     |
 | ||
| *>        |              .   .   . |
 | ||
| *>
 | ||
| *>  If (s,u,v) is a singular triplet of B with ||u|| = ||v|| = 1, then
 | ||
| *>  (+/-s,q), ||q|| = 1, are eigenpairs of TGK, with q = P * ( u' +/-v' ) /
 | ||
| *>  sqrt(2) = ( v_1 u_1 v_2 u_2 ... v_n u_n ) / sqrt(2), and
 | ||
| *>  P = [ e_{n+1} e_{1} e_{n+2} e_{2} ... ].
 | ||
| *>
 | ||
| *>  Given a TGK matrix, one can either a) compute -s,-v and change signs
 | ||
| *>  so that the singular values (and corresponding vectors) are already in
 | ||
| *>  descending order (as in SGESVD/SGESDD) or b) compute s,v and reorder
 | ||
| *>  the values (and corresponding vectors). SBDSVDX implements a) by
 | ||
| *>  calling SSTEVX (bisection plus inverse iteration, to be replaced
 | ||
| *>  with a version of the Multiple Relative Robust Representation
 | ||
| *>  algorithm. (See P. Willems and B. Lang, A framework for the MR^3
 | ||
| *>  algorithm: theory and implementation, SIAM J. Sci. Comput.,
 | ||
| *>  35:740-766, 2013.)
 | ||
| *> \endverbatim
 | ||
| *
 | ||
| *  Arguments:
 | ||
| *  ==========
 | ||
| *
 | ||
| *> \param[in] UPLO
 | ||
| *> \verbatim
 | ||
| *>          UPLO is CHARACTER*1
 | ||
| *>          = 'U':  B is upper bidiagonal;
 | ||
| *>          = 'L':  B is lower bidiagonal.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] JOBZ
 | ||
| *> \verbatim
 | ||
| *>          JOBZ is CHARACTER*1
 | ||
| *>          = 'N':  Compute singular values only;
 | ||
| *>          = 'V':  Compute singular values and singular vectors.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] RANGE
 | ||
| *> \verbatim
 | ||
| *>          RANGE is CHARACTER*1
 | ||
| *>          = 'A': all singular values will be found.
 | ||
| *>          = 'V': all singular values in the half-open interval [VL,VU)
 | ||
| *>                 will be found.
 | ||
| *>          = 'I': the IL-th through IU-th singular values will be found.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] N
 | ||
| *> \verbatim
 | ||
| *>          N is INTEGER
 | ||
| *>          The order of the bidiagonal matrix.  N >= 0.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] D
 | ||
| *> \verbatim
 | ||
| *>          D is REAL array, dimension (N)
 | ||
| *>          The n diagonal elements of the bidiagonal matrix B.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] E
 | ||
| *> \verbatim
 | ||
| *>          E is REAL array, dimension (max(1,N-1))
 | ||
| *>          The (n-1) superdiagonal elements of the bidiagonal matrix
 | ||
| *>          B in elements 1 to N-1.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] VL
 | ||
| *> \verbatim
 | ||
| *>         VL is REAL
 | ||
| *>          If RANGE='V', the lower bound of the interval to
 | ||
| *>          be searched for singular values. VU > VL.
 | ||
| *>          Not referenced if RANGE = 'A' or 'I'.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] VU
 | ||
| *> \verbatim
 | ||
| *>         VU is REAL
 | ||
| *>          If RANGE='V', the upper bound of the interval to
 | ||
| *>          be searched for singular values. VU > VL.
 | ||
| *>          Not referenced if RANGE = 'A' or 'I'.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] IL
 | ||
| *> \verbatim
 | ||
| *>          IL is INTEGER
 | ||
| *>          If RANGE='I', the index of the
 | ||
| *>          smallest singular value to be returned.
 | ||
| *>          1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
 | ||
| *>          Not referenced if RANGE = 'A' or 'V'.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] IU
 | ||
| *> \verbatim
 | ||
| *>          IU is INTEGER
 | ||
| *>          If RANGE='I', the index of the
 | ||
| *>          largest singular value to be returned.
 | ||
| *>          1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
 | ||
| *>          Not referenced if RANGE = 'A' or 'V'.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[out] NS
 | ||
| *> \verbatim
 | ||
| *>          NS is INTEGER
 | ||
| *>          The total number of singular values found.  0 <= NS <= N.
 | ||
| *>          If RANGE = 'A', NS = N, and if RANGE = 'I', NS = IU-IL+1.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[out] S
 | ||
| *> \verbatim
 | ||
| *>          S is REAL array, dimension (N)
 | ||
| *>          The first NS elements contain the selected singular values in
 | ||
| *>          ascending order.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[out] Z
 | ||
| *> \verbatim
 | ||
| *>          Z is REAL array, dimension (2*N,K)
 | ||
| *>          If JOBZ = 'V', then if INFO = 0 the first NS columns of Z
 | ||
| *>          contain the singular vectors of the matrix B corresponding to
 | ||
| *>          the selected singular values, with U in rows 1 to N and V
 | ||
| *>          in rows N+1 to N*2, i.e.
 | ||
| *>          Z = [ U ]
 | ||
| *>              [ V ]
 | ||
| *>          If JOBZ = 'N', then Z is not referenced.
 | ||
| *>          Note: The user must ensure that at least K = NS+1 columns are
 | ||
| *>          supplied in the array Z; if RANGE = 'V', the exact value of
 | ||
| *>          NS is not known in advance and an upper bound must be used.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[in] LDZ
 | ||
| *> \verbatim
 | ||
| *>          LDZ is INTEGER
 | ||
| *>          The leading dimension of the array Z. LDZ >= 1, and if
 | ||
| *>          JOBZ = 'V', LDZ >= max(2,N*2).
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[out] WORK
 | ||
| *> \verbatim
 | ||
| *>          WORK is REAL array, dimension (14*N)
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[out] IWORK
 | ||
| *> \verbatim
 | ||
| *>          IWORK is INTEGER array, dimension (12*N)
 | ||
| *>          If JOBZ = 'V', then if INFO = 0, the first NS elements of
 | ||
| *>          IWORK are zero. If INFO > 0, then IWORK contains the indices
 | ||
| *>          of the eigenvectors that failed to converge in DSTEVX.
 | ||
| *> \endverbatim
 | ||
| *>
 | ||
| *> \param[out] INFO
 | ||
| *> \verbatim
 | ||
| *>          INFO is INTEGER
 | ||
| *>          = 0:  successful exit
 | ||
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | ||
| *>          > 0:  if INFO = i, then i eigenvectors failed to converge
 | ||
| *>                   in SSTEVX. The indices of the eigenvectors
 | ||
| *>                   (as returned by SSTEVX) are stored in the
 | ||
| *>                   array IWORK.
 | ||
| *>                if INFO = N*2 + 1, an internal error occurred.
 | ||
| *> \endverbatim
 | ||
| *
 | ||
| *  Authors:
 | ||
| *  ========
 | ||
| *
 | ||
| *> \author Univ. of Tennessee
 | ||
| *> \author Univ. of California Berkeley
 | ||
| *> \author Univ. of Colorado Denver
 | ||
| *> \author NAG Ltd.
 | ||
| *
 | ||
| *> \ingroup realOTHEReigen
 | ||
| *
 | ||
| *  =====================================================================
 | ||
|       SUBROUTINE SBDSVDX( UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | ||
|      $                    NS, S, Z, LDZ, WORK, IWORK, INFO)
 | ||
| *
 | ||
| *  -- LAPACK driver routine --
 | ||
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | ||
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | ||
| *
 | ||
| *     .. Scalar Arguments ..
 | ||
|       CHARACTER          JOBZ, RANGE, UPLO
 | ||
|       INTEGER            IL, INFO, IU, LDZ, N, NS
 | ||
|       REAL               VL, VU
 | ||
| *     ..
 | ||
| *     .. Array Arguments ..
 | ||
|       INTEGER            IWORK( * )
 | ||
|       REAL               D( * ), E( * ), S( * ), WORK( * ),
 | ||
|      $                   Z( LDZ, * )
 | ||
| *     ..
 | ||
| *
 | ||
| *  =====================================================================
 | ||
| *
 | ||
| *     .. Parameters ..
 | ||
|       REAL               ZERO, ONE, TEN, HNDRD, MEIGTH
 | ||
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TEN = 10.0E0,
 | ||
|      $                     HNDRD = 100.0E0, MEIGTH = -0.1250E0 )
 | ||
|       REAL               FUDGE
 | ||
|       PARAMETER          ( FUDGE = 2.0E0 )
 | ||
| *     ..
 | ||
| *     .. Local Scalars ..
 | ||
|       CHARACTER          RNGVX
 | ||
|       LOGICAL            ALLSV, INDSV, LOWER, SPLIT, SVEQ0, VALSV, WANTZ
 | ||
|       INTEGER            I, ICOLZ, IDBEG, IDEND, IDTGK, IDPTR, IEPTR,
 | ||
|      $                   IETGK, IIFAIL, IIWORK, ILTGK, IROWU, IROWV,
 | ||
|      $                   IROWZ, ISBEG, ISPLT, ITEMP, IUTGK, J, K,
 | ||
|      $                   NTGK, NRU, NRV, NSL
 | ||
|       REAL               ABSTOL, EPS, EMIN, MU, NRMU, NRMV, ORTOL, SMAX,
 | ||
|      $                   SMIN, SQRT2, THRESH, TOL, ULP,
 | ||
|      $                   VLTGK, VUTGK, ZJTJI
 | ||
| *     ..
 | ||
| *     .. External Functions ..
 | ||
|       LOGICAL            LSAME
 | ||
|       INTEGER            ISAMAX
 | ||
|       REAL               SDOT, SLAMCH, SNRM2
 | ||
|       EXTERNAL           ISAMAX, LSAME, SAXPY, SDOT, SLAMCH, SNRM2
 | ||
| *     ..
 | ||
| *     .. External Subroutines ..
 | ||
|       EXTERNAL           SCOPY, SLASET, SSCAL, SSWAP, SSTEVX, XERBLA
 | ||
| *     ..
 | ||
| *     .. Intrinsic Functions ..
 | ||
|       INTRINSIC          ABS, REAL, SIGN, SQRT
 | ||
| *     ..
 | ||
| *     .. Executable Statements ..
 | ||
| *
 | ||
| *     Test the input parameters.
 | ||
| *
 | ||
|       ALLSV = LSAME( RANGE, 'A' )
 | ||
|       VALSV = LSAME( RANGE, 'V' )
 | ||
|       INDSV = LSAME( RANGE, 'I' )
 | ||
|       WANTZ = LSAME( JOBZ, 'V' )
 | ||
|       LOWER = LSAME( UPLO, 'L' )
 | ||
| *
 | ||
|       INFO = 0
 | ||
|       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
 | ||
|          INFO = -1
 | ||
|       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | ||
|          INFO = -2
 | ||
|       ELSE IF( .NOT.( ALLSV .OR. VALSV .OR. INDSV ) ) THEN
 | ||
|          INFO = -3
 | ||
|       ELSE IF( N.LT.0 ) THEN
 | ||
|          INFO = -4
 | ||
|       ELSE IF( N.GT.0 ) THEN
 | ||
|          IF( VALSV ) THEN
 | ||
|             IF( VL.LT.ZERO ) THEN
 | ||
|                INFO = -7
 | ||
|             ELSE IF( VU.LE.VL ) THEN
 | ||
|                INFO = -8
 | ||
|             END IF
 | ||
|          ELSE IF( INDSV ) THEN
 | ||
|             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | ||
|                INFO = -9
 | ||
|             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | ||
|                INFO = -10
 | ||
|             END IF
 | ||
|          END IF
 | ||
|       END IF
 | ||
|       IF( INFO.EQ.0 ) THEN
 | ||
|          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N*2 ) ) INFO = -14
 | ||
|       END IF
 | ||
| *
 | ||
|       IF( INFO.NE.0 ) THEN
 | ||
|          CALL XERBLA( 'SBDSVDX', -INFO )
 | ||
|          RETURN
 | ||
|       END IF
 | ||
| *
 | ||
| *     Quick return if possible (N.LE.1)
 | ||
| *
 | ||
|       NS = 0
 | ||
|       IF( N.EQ.0 ) RETURN
 | ||
| *
 | ||
|       IF( N.EQ.1 ) THEN
 | ||
|          IF( ALLSV .OR. INDSV ) THEN
 | ||
|             NS = 1
 | ||
|             S( 1 ) = ABS( D( 1 ) )
 | ||
|          ELSE
 | ||
|             IF( VL.LT.ABS( D( 1 ) ) .AND. VU.GE.ABS( D( 1 ) ) ) THEN
 | ||
|                NS = 1
 | ||
|                S( 1 ) = ABS( D( 1 ) )
 | ||
|             END IF
 | ||
|          END IF
 | ||
|          IF( WANTZ ) THEN
 | ||
|             Z( 1, 1 ) = SIGN( ONE, D( 1 ) )
 | ||
|             Z( 2, 1 ) = ONE
 | ||
|          END IF
 | ||
|          RETURN
 | ||
|       END IF
 | ||
| *
 | ||
|       ABSTOL = 2*SLAMCH( 'Safe Minimum' )
 | ||
|       ULP = SLAMCH( 'Precision' )
 | ||
|       EPS = SLAMCH( 'Epsilon' )
 | ||
|       SQRT2 = SQRT( 2.0E0 )
 | ||
|       ORTOL = SQRT( ULP )
 | ||
| *
 | ||
| *     Criterion for splitting is taken from SBDSQR when singular
 | ||
| *     values are computed to relative accuracy TOL. (See J. Demmel and
 | ||
| *     W. Kahan, Accurate singular values of bidiagonal matrices, SIAM
 | ||
| *     J. Sci. and Stat. Comput., 11:873–912, 1990.)
 | ||
| *
 | ||
|       TOL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )*EPS
 | ||
| *
 | ||
| *     Compute approximate maximum, minimum singular values.
 | ||
| *
 | ||
|       I = ISAMAX( N, D, 1 )
 | ||
|       SMAX = ABS( D( I ) )
 | ||
|       I = ISAMAX( N-1, E, 1 )
 | ||
|       SMAX = MAX( SMAX, ABS( E( I ) ) )
 | ||
| *
 | ||
| *     Compute threshold for neglecting D's and E's.
 | ||
| *
 | ||
|       SMIN = ABS( D( 1 ) )
 | ||
|       IF( SMIN.NE.ZERO ) THEN
 | ||
|          MU = SMIN
 | ||
|          DO I = 2, N
 | ||
|             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
 | ||
|             SMIN = MIN( SMIN, MU )
 | ||
|             IF( SMIN.EQ.ZERO ) EXIT
 | ||
|          END DO
 | ||
|       END IF
 | ||
|       SMIN = SMIN / SQRT( REAL( N ) )
 | ||
|       THRESH = TOL*SMIN
 | ||
| *
 | ||
| *     Check for zeros in D and E (splits), i.e. submatrices.
 | ||
| *
 | ||
|       DO I = 1, N-1
 | ||
|          IF( ABS( D( I ) ).LE.THRESH ) D( I ) = ZERO
 | ||
|          IF( ABS( E( I ) ).LE.THRESH ) E( I ) = ZERO
 | ||
|       END DO
 | ||
|       IF( ABS( D( N ) ).LE.THRESH ) D( N ) = ZERO
 | ||
| *
 | ||
| *     Pointers for arrays used by SSTEVX.
 | ||
| *
 | ||
|       IDTGK = 1
 | ||
|       IETGK = IDTGK + N*2
 | ||
|       ITEMP = IETGK + N*2
 | ||
|       IIFAIL = 1
 | ||
|       IIWORK = IIFAIL + N*2
 | ||
| *
 | ||
| *     Set RNGVX, which corresponds to RANGE for SSTEVX in TGK mode.
 | ||
| *     VL,VU or IL,IU are redefined to conform to implementation a)
 | ||
| *     described in the leading comments.
 | ||
| *
 | ||
|       ILTGK = 0
 | ||
|       IUTGK = 0
 | ||
|       VLTGK = ZERO
 | ||
|       VUTGK = ZERO
 | ||
| *
 | ||
|       IF( ALLSV ) THEN
 | ||
| *
 | ||
| *        All singular values will be found. We aim at -s (see
 | ||
| *        leading comments) with RNGVX = 'I'. IL and IU are set
 | ||
| *        later (as ILTGK and IUTGK) according to the dimension
 | ||
| *        of the active submatrix.
 | ||
| *
 | ||
|          RNGVX = 'I'
 | ||
|          IF( WANTZ ) CALL SLASET( 'F', N*2, N+1, ZERO, ZERO, Z, LDZ )
 | ||
|       ELSE IF( VALSV ) THEN
 | ||
| *
 | ||
| *        Find singular values in a half-open interval. We aim
 | ||
| *        at -s (see leading comments) and we swap VL and VU
 | ||
| *        (as VUTGK and VLTGK), changing their signs.
 | ||
| *
 | ||
|          RNGVX = 'V'
 | ||
|          VLTGK = -VU
 | ||
|          VUTGK = -VL
 | ||
|          WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
 | ||
|          CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
 | ||
|          CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
 | ||
|          CALL SSTEVX( 'N', 'V', N*2, WORK( IDTGK ), WORK( IETGK ),
 | ||
|      $                VLTGK, VUTGK, ILTGK, ILTGK, ABSTOL, NS, S,
 | ||
|      $                Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
 | ||
|      $                IWORK( IIFAIL ), INFO )
 | ||
|          IF( NS.EQ.0 ) THEN
 | ||
|             RETURN
 | ||
|          ELSE
 | ||
|             IF( WANTZ ) CALL SLASET( 'F', N*2, NS, ZERO, ZERO, Z, LDZ )
 | ||
|          END IF
 | ||
|       ELSE IF( INDSV ) THEN
 | ||
| *
 | ||
| *        Find the IL-th through the IU-th singular values. We aim
 | ||
| *        at -s (see leading comments) and indices are mapped into
 | ||
| *        values, therefore mimicking SSTEBZ, where
 | ||
| *
 | ||
| *        GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN
 | ||
| *        GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN
 | ||
| *
 | ||
|          ILTGK = IL
 | ||
|          IUTGK = IU
 | ||
|          RNGVX = 'V'
 | ||
|          WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
 | ||
|          CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
 | ||
|          CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
 | ||
|          CALL SSTEVX( 'N', 'I', N*2, WORK( IDTGK ), WORK( IETGK ),
 | ||
|      $                VLTGK, VLTGK, ILTGK, ILTGK, ABSTOL, NS, S,
 | ||
|      $                Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
 | ||
|      $                IWORK( IIFAIL ), INFO )
 | ||
|          VLTGK = S( 1 ) - FUDGE*SMAX*ULP*N
 | ||
|          WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
 | ||
|          CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
 | ||
|          CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
 | ||
|          CALL SSTEVX( 'N', 'I', N*2, WORK( IDTGK ), WORK( IETGK ),
 | ||
|      $                VUTGK, VUTGK, IUTGK, IUTGK, ABSTOL, NS, S,
 | ||
|      $                Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
 | ||
|      $                IWORK( IIFAIL ), INFO )
 | ||
|          VUTGK = S( 1 ) + FUDGE*SMAX*ULP*N
 | ||
|          VUTGK = MIN( VUTGK, ZERO )
 | ||
| *
 | ||
| *        If VLTGK=VUTGK, SSTEVX returns an error message,
 | ||
| *        so if needed we change VUTGK slightly.
 | ||
| *
 | ||
|          IF( VLTGK.EQ.VUTGK ) VLTGK = VLTGK - TOL
 | ||
| *
 | ||
|          IF( WANTZ ) CALL SLASET( 'F', N*2, IU-IL+1, ZERO, ZERO, Z, LDZ)
 | ||
|       END IF
 | ||
| *
 | ||
| *     Initialize variables and pointers for S, Z, and WORK.
 | ||
| *
 | ||
| *     NRU, NRV: number of rows in U and V for the active submatrix
 | ||
| *     IDBEG, ISBEG: offsets for the entries of D and S
 | ||
| *     IROWZ, ICOLZ: offsets for the rows and columns of Z
 | ||
| *     IROWU, IROWV: offsets for the rows of U and V
 | ||
| *
 | ||
|       NS = 0
 | ||
|       NRU = 0
 | ||
|       NRV = 0
 | ||
|       IDBEG = 1
 | ||
|       ISBEG = 1
 | ||
|       IROWZ = 1
 | ||
|       ICOLZ = 1
 | ||
|       IROWU = 2
 | ||
|       IROWV = 1
 | ||
|       SPLIT = .FALSE.
 | ||
|       SVEQ0 = .FALSE.
 | ||
| *
 | ||
| *     Form the tridiagonal TGK matrix.
 | ||
| *
 | ||
|       S( 1:N ) = ZERO
 | ||
|       WORK( IETGK+2*N-1 ) = ZERO
 | ||
|       WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
 | ||
|       CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
 | ||
|       CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
 | ||
| *
 | ||
| *
 | ||
| *     Check for splits in two levels, outer level
 | ||
| *     in E and inner level in D.
 | ||
| *
 | ||
|       DO IEPTR = 2, N*2, 2
 | ||
|          IF( WORK( IETGK+IEPTR-1 ).EQ.ZERO ) THEN
 | ||
| *
 | ||
| *           Split in E (this piece of B is square) or bottom
 | ||
| *           of the (input bidiagonal) matrix.
 | ||
| *
 | ||
|             ISPLT = IDBEG
 | ||
|             IDEND = IEPTR - 1
 | ||
|             DO IDPTR = IDBEG, IDEND, 2
 | ||
|                IF( WORK( IETGK+IDPTR-1 ).EQ.ZERO ) THEN
 | ||
| *
 | ||
| *                 Split in D (rectangular submatrix). Set the number
 | ||
| *                 of rows in U and V (NRU and NRV) accordingly.
 | ||
| *
 | ||
|                   IF( IDPTR.EQ.IDBEG ) THEN
 | ||
| *
 | ||
| *                    D=0 at the top.
 | ||
| *
 | ||
|                      SVEQ0 = .TRUE.
 | ||
|                      IF( IDBEG.EQ.IDEND) THEN
 | ||
|                         NRU = 1
 | ||
|                         NRV = 1
 | ||
|                      END IF
 | ||
|                   ELSE IF( IDPTR.EQ.IDEND ) THEN
 | ||
| *
 | ||
| *                    D=0 at the bottom.
 | ||
| *
 | ||
|                      SVEQ0 = .TRUE.
 | ||
|                      NRU = (IDEND-ISPLT)/2 + 1
 | ||
|                      NRV = NRU
 | ||
|                      IF( ISPLT.NE.IDBEG ) THEN
 | ||
|                         NRU = NRU + 1
 | ||
|                      END IF
 | ||
|                   ELSE
 | ||
|                      IF( ISPLT.EQ.IDBEG ) THEN
 | ||
| *
 | ||
| *                       Split: top rectangular submatrix.
 | ||
| *
 | ||
|                         NRU = (IDPTR-IDBEG)/2
 | ||
|                         NRV = NRU + 1
 | ||
|                      ELSE
 | ||
| *
 | ||
| *                       Split: middle square submatrix.
 | ||
| *
 | ||
|                         NRU = (IDPTR-ISPLT)/2 + 1
 | ||
|                         NRV = NRU
 | ||
|                      END IF
 | ||
|                   END IF
 | ||
|                ELSE IF( IDPTR.EQ.IDEND ) THEN
 | ||
| *
 | ||
| *                 Last entry of D in the active submatrix.
 | ||
| *
 | ||
|                   IF( ISPLT.EQ.IDBEG ) THEN
 | ||
| *
 | ||
| *                    No split (trivial case).
 | ||
| *
 | ||
|                      NRU = (IDEND-IDBEG)/2 + 1
 | ||
|                      NRV = NRU
 | ||
|                   ELSE
 | ||
| *
 | ||
| *                    Split: bottom rectangular submatrix.
 | ||
| *
 | ||
|                      NRV = (IDEND-ISPLT)/2 + 1
 | ||
|                      NRU = NRV + 1
 | ||
|                   END IF
 | ||
|                END IF
 | ||
| *
 | ||
|                NTGK = NRU + NRV
 | ||
| *
 | ||
|                IF( NTGK.GT.0 ) THEN
 | ||
| *
 | ||
| *                 Compute eigenvalues/vectors of the active
 | ||
| *                 submatrix according to RANGE:
 | ||
| *                 if RANGE='A' (ALLSV) then RNGVX = 'I'
 | ||
| *                 if RANGE='V' (VALSV) then RNGVX = 'V'
 | ||
| *                 if RANGE='I' (INDSV) then RNGVX = 'V'
 | ||
| *
 | ||
|                   ILTGK = 1
 | ||
|                   IUTGK = NTGK / 2
 | ||
|                   IF( ALLSV .OR. VUTGK.EQ.ZERO ) THEN
 | ||
|                      IF( SVEQ0 .OR.
 | ||
|      $                   SMIN.LT.EPS .OR.
 | ||
|      $                   MOD(NTGK,2).GT.0 ) THEN
 | ||
| *                        Special case: eigenvalue equal to zero or very
 | ||
| *                        small, additional eigenvector is needed.
 | ||
|                          IUTGK = IUTGK + 1
 | ||
|                      END IF
 | ||
|                   END IF
 | ||
| *
 | ||
| *                 Workspace needed by SSTEVX:
 | ||
| *                 WORK( ITEMP: ): 2*5*NTGK
 | ||
| *                 IWORK( 1: ): 2*6*NTGK
 | ||
| *
 | ||
|                   CALL SSTEVX( JOBZ, RNGVX, NTGK, WORK( IDTGK+ISPLT-1 ),
 | ||
|      $                         WORK( IETGK+ISPLT-1 ), VLTGK, VUTGK,
 | ||
|      $                         ILTGK, IUTGK, ABSTOL, NSL, S( ISBEG ),
 | ||
|      $                         Z( IROWZ,ICOLZ ), LDZ, WORK( ITEMP ),
 | ||
|      $                         IWORK( IIWORK ), IWORK( IIFAIL ),
 | ||
|      $                         INFO )
 | ||
|                   IF( INFO.NE.0 ) THEN
 | ||
| *                    Exit with the error code from SSTEVX.
 | ||
|                      RETURN
 | ||
|                   END IF
 | ||
|                   EMIN = ABS( MAXVAL( S( ISBEG:ISBEG+NSL-1 ) ) )
 | ||
| *
 | ||
|                   IF( NSL.GT.0 .AND. WANTZ ) THEN
 | ||
| *
 | ||
| *                    Normalize u=Z([2,4,...],:) and v=Z([1,3,...],:),
 | ||
| *                    changing the sign of v as discussed in the leading
 | ||
| *                    comments. The norms of u and v may be (slightly)
 | ||
| *                    different from 1/sqrt(2) if the corresponding
 | ||
| *                    eigenvalues are very small or too close. We check
 | ||
| *                    those norms and, if needed, reorthogonalize the
 | ||
| *                    vectors.
 | ||
| *
 | ||
|                      IF( NSL.GT.1 .AND.
 | ||
|      $                   VUTGK.EQ.ZERO .AND.
 | ||
|      $                   MOD(NTGK,2).EQ.0 .AND.
 | ||
|      $                   EMIN.EQ.0 .AND. .NOT.SPLIT ) THEN
 | ||
| *
 | ||
| *                       D=0 at the top or bottom of the active submatrix:
 | ||
| *                       one eigenvalue is equal to zero; concatenate the
 | ||
| *                       eigenvectors corresponding to the two smallest
 | ||
| *                       eigenvalues.
 | ||
| *
 | ||
|                         Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) =
 | ||
|      $                  Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) +
 | ||
|      $                  Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 )
 | ||
|                         Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 ) =
 | ||
|      $                  ZERO
 | ||
| *                       IF( IUTGK*2.GT.NTGK ) THEN
 | ||
| *                          Eigenvalue equal to zero or very small.
 | ||
| *                          NSL = NSL - 1
 | ||
| *                       END IF
 | ||
|                      END IF
 | ||
| *
 | ||
|                      DO I = 0, MIN( NSL-1, NRU-1 )
 | ||
|                         NRMU = SNRM2( NRU, Z( IROWU, ICOLZ+I ), 2 )
 | ||
|                         IF( NRMU.EQ.ZERO ) THEN
 | ||
|                            INFO = N*2 + 1
 | ||
|                            RETURN
 | ||
|                         END IF
 | ||
|                         CALL SSCAL( NRU, ONE/NRMU,
 | ||
|      $                              Z( IROWU,ICOLZ+I ), 2 )
 | ||
|                         IF( NRMU.NE.ONE .AND.
 | ||
|      $                      ABS( NRMU-ORTOL )*SQRT2.GT.ONE )
 | ||
|      $                      THEN
 | ||
|                            DO J = 0, I-1
 | ||
|                               ZJTJI = -SDOT( NRU, Z( IROWU, ICOLZ+J ),
 | ||
|      $                                       2, Z( IROWU, ICOLZ+I ), 2 )
 | ||
|                               CALL SAXPY( NRU, ZJTJI,
 | ||
|      $                                    Z( IROWU, ICOLZ+J ), 2,
 | ||
|      $                                    Z( IROWU, ICOLZ+I ), 2 )
 | ||
|                            END DO
 | ||
|                            NRMU = SNRM2( NRU, Z( IROWU, ICOLZ+I ), 2 )
 | ||
|                            CALL SSCAL( NRU, ONE/NRMU,
 | ||
|      $                                 Z( IROWU,ICOLZ+I ), 2 )
 | ||
|                         END IF
 | ||
|                      END DO
 | ||
|                      DO I = 0, MIN( NSL-1, NRV-1 )
 | ||
|                         NRMV = SNRM2( NRV, Z( IROWV, ICOLZ+I ), 2 )
 | ||
|                         IF( NRMV.EQ.ZERO ) THEN
 | ||
|                            INFO = N*2 + 1
 | ||
|                            RETURN
 | ||
|                         END IF
 | ||
|                         CALL SSCAL( NRV, -ONE/NRMV,
 | ||
|      $                              Z( IROWV,ICOLZ+I ), 2 )
 | ||
|                         IF( NRMV.NE.ONE .AND.
 | ||
|      $                      ABS( NRMV-ORTOL )*SQRT2.GT.ONE )
 | ||
|      $                      THEN
 | ||
|                            DO J = 0, I-1
 | ||
|                               ZJTJI = -SDOT( NRV, Z( IROWV, ICOLZ+J ),
 | ||
|      $                                       2, Z( IROWV, ICOLZ+I ), 2 )
 | ||
|                               CALL SAXPY( NRU, ZJTJI,
 | ||
|      $                                    Z( IROWV, ICOLZ+J ), 2,
 | ||
|      $                                    Z( IROWV, ICOLZ+I ), 2 )
 | ||
|                            END DO
 | ||
|                            NRMV = SNRM2( NRV, Z( IROWV, ICOLZ+I ), 2 )
 | ||
|                            CALL SSCAL( NRV, ONE/NRMV,
 | ||
|      $                                 Z( IROWV,ICOLZ+I ), 2 )
 | ||
|                         END IF
 | ||
|                      END DO
 | ||
|                      IF( VUTGK.EQ.ZERO .AND.
 | ||
|      $                   IDPTR.LT.IDEND .AND.
 | ||
|      $                   MOD(NTGK,2).GT.0 ) THEN
 | ||
| *
 | ||
| *                       D=0 in the middle of the active submatrix (one
 | ||
| *                       eigenvalue is equal to zero): save the corresponding
 | ||
| *                       eigenvector for later use (when bottom of the
 | ||
| *                       active submatrix is reached).
 | ||
| *
 | ||
|                         SPLIT = .TRUE.
 | ||
|                         Z( IROWZ:IROWZ+NTGK-1,N+1 ) =
 | ||
|      $                     Z( IROWZ:IROWZ+NTGK-1,NS+NSL )
 | ||
|                         Z( IROWZ:IROWZ+NTGK-1,NS+NSL ) =
 | ||
|      $                     ZERO
 | ||
|                      END IF
 | ||
|                   END IF !** WANTZ **!
 | ||
| *
 | ||
|                   NSL = MIN( NSL, NRU )
 | ||
|                   SVEQ0 = .FALSE.
 | ||
| *
 | ||
| *                 Absolute values of the eigenvalues of TGK.
 | ||
| *
 | ||
|                   DO I = 0, NSL-1
 | ||
|                      S( ISBEG+I ) = ABS( S( ISBEG+I ) )
 | ||
|                   END DO
 | ||
| *
 | ||
| *                 Update pointers for TGK, S and Z.
 | ||
| *
 | ||
|                   ISBEG = ISBEG + NSL
 | ||
|                   IROWZ = IROWZ + NTGK
 | ||
|                   ICOLZ = ICOLZ + NSL
 | ||
|                   IROWU = IROWZ
 | ||
|                   IROWV = IROWZ + 1
 | ||
|                   ISPLT = IDPTR + 1
 | ||
|                   NS = NS + NSL
 | ||
|                   NRU = 0
 | ||
|                   NRV = 0
 | ||
|                END IF !** NTGK.GT.0 **!
 | ||
|                IF( IROWZ.LT.N*2 .AND. WANTZ ) THEN
 | ||
|                   Z( 1:IROWZ-1, ICOLZ ) = ZERO
 | ||
|                END IF
 | ||
|             END DO !** IDPTR loop **!
 | ||
|             IF( SPLIT .AND. WANTZ ) THEN
 | ||
| *
 | ||
| *              Bring back eigenvector corresponding
 | ||
| *              to eigenvalue equal to zero.
 | ||
| *
 | ||
|                Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) =
 | ||
|      $         Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) +
 | ||
|      $         Z( IDBEG:IDEND-NTGK+1,N+1 )
 | ||
|                Z( IDBEG:IDEND-NTGK+1,N+1 ) = 0
 | ||
|             END IF
 | ||
|             IROWV = IROWV - 1
 | ||
|             IROWU = IROWU + 1
 | ||
|             IDBEG = IEPTR + 1
 | ||
|             SVEQ0 = .FALSE.
 | ||
|             SPLIT = .FALSE.
 | ||
|          END IF !** Check for split in E **!
 | ||
|       END DO !** IEPTR loop **!
 | ||
| *
 | ||
| *     Sort the singular values into decreasing order (insertion sort on
 | ||
| *     singular values, but only one transposition per singular vector)
 | ||
| *
 | ||
|       DO I = 1, NS-1
 | ||
|          K = 1
 | ||
|          SMIN = S( 1 )
 | ||
|          DO J = 2, NS + 1 - I
 | ||
|             IF( S( J ).LE.SMIN ) THEN
 | ||
|                K = J
 | ||
|                SMIN = S( J )
 | ||
|             END IF
 | ||
|          END DO
 | ||
|          IF( K.NE.NS+1-I ) THEN
 | ||
|             S( K ) = S( NS+1-I )
 | ||
|             S( NS+1-I ) = SMIN
 | ||
|             IF( WANTZ ) CALL SSWAP( N*2, Z( 1,K ), 1, Z( 1,NS+1-I ), 1 )
 | ||
|          END IF
 | ||
|       END DO
 | ||
| *
 | ||
| *     If RANGE=I, check for singular values/vectors to be discarded.
 | ||
| *
 | ||
|       IF( INDSV ) THEN
 | ||
|          K = IU - IL + 1
 | ||
|          IF( K.LT.NS ) THEN
 | ||
|             S( K+1:NS ) = ZERO
 | ||
|             IF( WANTZ ) Z( 1:N*2,K+1:NS ) = ZERO
 | ||
|             NS = K
 | ||
|          END IF
 | ||
|       END IF
 | ||
| *
 | ||
| *     Reorder Z: U = Z( 1:N,1:NS ), V = Z( N+1:N*2,1:NS ).
 | ||
| *     If B is a lower diagonal, swap U and V.
 | ||
| *
 | ||
|       IF( WANTZ ) THEN
 | ||
|       DO I = 1, NS
 | ||
|          CALL SCOPY( N*2, Z( 1,I ), 1, WORK, 1 )
 | ||
|          IF( LOWER ) THEN
 | ||
|             CALL SCOPY( N, WORK( 2 ), 2, Z( N+1,I ), 1 )
 | ||
|             CALL SCOPY( N, WORK( 1 ), 2, Z( 1  ,I ), 1 )
 | ||
|          ELSE
 | ||
|             CALL SCOPY( N, WORK( 2 ), 2, Z( 1  ,I ), 1 )
 | ||
|             CALL SCOPY( N, WORK( 1 ), 2, Z( N+1,I ), 1 )
 | ||
|          END IF
 | ||
|       END DO
 | ||
|       END IF
 | ||
| *
 | ||
|       RETURN
 | ||
| *
 | ||
| *     End of SBDSVDX
 | ||
| *
 | ||
|       END
 |