1373 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1373 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__3 = 3;
 | |
| static integer c__2 = 2;
 | |
| static integer c__0 = 0;
 | |
| 
 | |
| /* > \brief \b DSTEBZ */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DSTEBZ + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstebz.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstebz.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstebz.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, */
 | |
| /*                          M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, */
 | |
| /*                          INFO ) */
 | |
| 
 | |
| /*       CHARACTER          ORDER, RANGE */
 | |
| /*       INTEGER            IL, INFO, IU, M, N, NSPLIT */
 | |
| /*       DOUBLE PRECISION   ABSTOL, VL, VU */
 | |
| /*       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DSTEBZ computes the eigenvalues of a symmetric tridiagonal */
 | |
| /* > matrix T.  The user may ask for all eigenvalues, all eigenvalues */
 | |
| /* > in the half-open interval (VL, VU], or the IL-th through IU-th */
 | |
| /* > eigenvalues. */
 | |
| /* > */
 | |
| /* > To avoid overflow, the matrix must be scaled so that its */
 | |
| /* > largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
 | |
|  */
 | |
| /* > accuracy, it should not be much smaller than that. */
 | |
| /* > */
 | |
| /* > See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
 | |
| /* > Matrix", Report CS41, Computer Science Dept., Stanford */
 | |
| /* > University, July 21, 1966. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] RANGE */
 | |
| /* > \verbatim */
 | |
| /* >          RANGE is CHARACTER*1 */
 | |
| /* >          = 'A': ("All")   all eigenvalues will be found. */
 | |
| /* >          = 'V': ("Value") all eigenvalues in the half-open interval */
 | |
| /* >                           (VL, VU] will be found. */
 | |
| /* >          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
 | |
| /* >                           entire matrix) will be found. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ORDER */
 | |
| /* > \verbatim */
 | |
| /* >          ORDER is CHARACTER*1 */
 | |
| /* >          = 'B': ("By Block") the eigenvalues will be grouped by */
 | |
| /* >                              split-off block (see IBLOCK, ISPLIT) and */
 | |
| /* >                              ordered from smallest to largest within */
 | |
| /* >                              the block. */
 | |
| /* >          = 'E': ("Entire matrix") */
 | |
| /* >                              the eigenvalues for the entire matrix */
 | |
| /* >                              will be ordered from smallest to */
 | |
| /* >                              largest. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the tridiagonal matrix T.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is DOUBLE PRECISION */
 | |
| /* > */
 | |
| /* >          If RANGE='V', the lower bound of the interval to */
 | |
| /* >          be searched for eigenvalues.  Eigenvalues less than or equal */
 | |
| /* >          to VL, or greater than VU, will not be returned.  VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VU */
 | |
| /* > \verbatim */
 | |
| /* >          VU is DOUBLE PRECISION */
 | |
| /* > */
 | |
| /* >          If RANGE='V', the upper bound of the interval to */
 | |
| /* >          be searched for eigenvalues.  Eigenvalues less than or equal */
 | |
| /* >          to VL, or greater than VU, will not be returned.  VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IL */
 | |
| /* > \verbatim */
 | |
| /* >          IL is INTEGER */
 | |
| /* > */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          smallest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IU */
 | |
| /* > \verbatim */
 | |
| /* >          IU is INTEGER */
 | |
| /* > */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          largest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ABSTOL */
 | |
| /* > \verbatim */
 | |
| /* >          ABSTOL is DOUBLE PRECISION */
 | |
| /* >          The absolute tolerance for the eigenvalues.  An eigenvalue */
 | |
| /* >          (or cluster) is considered to be located if it has been */
 | |
| /* >          determined to lie in an interval whose width is ABSTOL or */
 | |
| /* >          less.  If ABSTOL is less than or equal to zero, then ULP*|T| */
 | |
| /* >          will be used, where |T| means the 1-norm of T. */
 | |
| /* > */
 | |
| /* >          Eigenvalues will be computed most accurately when ABSTOL is */
 | |
| /* >          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The n diagonal elements of the tridiagonal matrix T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is DOUBLE PRECISION array, dimension (N-1) */
 | |
| /* >          The (n-1) off-diagonal elements of the tridiagonal matrix T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The actual number of eigenvalues found. 0 <= M <= N. */
 | |
| /* >          (See also the description of INFO=2,3.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] NSPLIT */
 | |
| /* > \verbatim */
 | |
| /* >          NSPLIT is INTEGER */
 | |
| /* >          The number of diagonal blocks in the matrix T. */
 | |
| /* >          1 <= NSPLIT <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          On exit, the first M elements of W will contain the */
 | |
| /* >          eigenvalues.  (DSTEBZ may use the remaining N-M elements as */
 | |
| /* >          workspace.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IBLOCK */
 | |
| /* > \verbatim */
 | |
| /* >          IBLOCK is INTEGER array, dimension (N) */
 | |
| /* >          At each row/column j where E(j) is zero or small, the */
 | |
| /* >          matrix T is considered to split into a block diagonal */
 | |
| /* >          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which */
 | |
| /* >          block (from 1 to the number of blocks) the eigenvalue W(i) */
 | |
| /* >          belongs.  (DSTEBZ may use the remaining N-M elements as */
 | |
| /* >          workspace.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ISPLIT */
 | |
| /* > \verbatim */
 | |
| /* >          ISPLIT is INTEGER array, dimension (N) */
 | |
| /* >          The splitting points, at which T breaks up into submatrices. */
 | |
| /* >          The first submatrix consists of rows/columns 1 to ISPLIT(1), */
 | |
| /* >          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
 | |
| /* >          etc., and the NSPLIT-th consists of rows/columns */
 | |
| /* >          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
 | |
| /* >          (Only the first NSPLIT elements will actually be used, but */
 | |
| /* >          since the user cannot know a priori what value NSPLIT will */
 | |
| /* >          have, N words must be reserved for ISPLIT.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (4*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (3*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0:  some or all of the eigenvalues failed to converge or */
 | |
| /* >                were not computed: */
 | |
| /* >                =1 or 3: Bisection failed to converge for some */
 | |
| /* >                        eigenvalues; these eigenvalues are flagged by a */
 | |
| /* >                        negative block number.  The effect is that the */
 | |
| /* >                        eigenvalues may not be as accurate as the */
 | |
| /* >                        absolute and relative tolerances.  This is */
 | |
| /* >                        generally caused by unexpectedly inaccurate */
 | |
| /* >                        arithmetic. */
 | |
| /* >                =2 or 3: RANGE='I' only: Not all of the eigenvalues */
 | |
| /* >                        IL:IU were found. */
 | |
| /* >                        Effect: M < IU+1-IL */
 | |
| /* >                        Cause:  non-monotonic arithmetic, causing the */
 | |
| /* >                                Sturm sequence to be non-monotonic. */
 | |
| /* >                        Cure:   recalculate, using RANGE='A', and pick */
 | |
| /* >                                out eigenvalues IL:IU.  In some cases, */
 | |
| /* >                                increasing the PARAMETER "FUDGE" may */
 | |
| /* >                                make things work. */
 | |
| /* >                = 4:    RANGE='I', and the Gershgorin interval */
 | |
| /* >                        initially used was too small.  No eigenvalues */
 | |
| /* >                        were computed. */
 | |
| /* >                        Probable cause: your machine has sloppy */
 | |
| /* >                                        floating-point arithmetic. */
 | |
| /* >                        Cure: Increase the PARAMETER "FUDGE", */
 | |
| /* >                              recompile, and try again. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Internal Parameters: */
 | |
| /*  ========================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  RELFAC  DOUBLE PRECISION, default = 2.0e0 */
 | |
| /* >          The relative tolerance.  An interval (a,b] lies within */
 | |
| /* >          "relative tolerance" if  b-a < RELFAC*ulp*f2cmax(|a|,|b|), */
 | |
| /* >          where "ulp" is the machine precision (distance from 1 to */
 | |
| /* >          the next larger floating point number.) */
 | |
| /* > */
 | |
| /* >  FUDGE   DOUBLE PRECISION, default = 2 */
 | |
| /* >          A "fudge factor" to widen the Gershgorin intervals.  Ideally, */
 | |
| /* >          a value of 1 should work, but on machines with sloppy */
 | |
| /* >          arithmetic, this needs to be larger.  The default for */
 | |
| /* >          publicly released versions should be large enough to handle */
 | |
| /* >          the worst machine around.  Note that this has no effect */
 | |
| /* >          on accuracy of the solution. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup auxOTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int dstebz_(char *range, char *order, integer *n, doublereal 
 | |
| 	*vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, 
 | |
| 	doublereal *d__, doublereal *e, integer *m, integer *nsplit, 
 | |
| 	doublereal *w, integer *iblock, integer *isplit, doublereal *work, 
 | |
| 	integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2, i__3;
 | |
|     doublereal d__1, d__2, d__3, d__4, d__5;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer iend, ioff, iout, itmp1, j, jdisc;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo;
 | |
|     doublereal atoli;
 | |
|     integer iwoff;
 | |
|     doublereal bnorm;
 | |
|     integer itmax;
 | |
|     doublereal wkill, rtoli, tnorm;
 | |
|     integer ib, jb, ie, je, nb;
 | |
|     doublereal gl;
 | |
|     integer im, in;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     integer ibegin;
 | |
|     doublereal gu;
 | |
|     integer iw;
 | |
|     extern /* Subroutine */ int dlaebz_(integer *, integer *, integer *, 
 | |
| 	    integer *, integer *, integer *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
 | |
| 	     doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, integer *);
 | |
|     doublereal wl;
 | |
|     integer irange, idiscl;
 | |
|     doublereal safemn, wu;
 | |
|     integer idumma[1];
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer idiscu, iorder;
 | |
|     logical ncnvrg;
 | |
|     doublereal pivmin;
 | |
|     logical toofew;
 | |
|     integer nwl;
 | |
|     doublereal ulp, wlu, wul;
 | |
|     integer nwu;
 | |
|     doublereal tmp1, tmp2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iwork;
 | |
|     --work;
 | |
|     --isplit;
 | |
|     --iblock;
 | |
|     --w;
 | |
|     --e;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Decode RANGE */
 | |
| 
 | |
|     if (lsame_(range, "A")) {
 | |
| 	irange = 1;
 | |
|     } else if (lsame_(range, "V")) {
 | |
| 	irange = 2;
 | |
|     } else if (lsame_(range, "I")) {
 | |
| 	irange = 3;
 | |
|     } else {
 | |
| 	irange = 0;
 | |
|     }
 | |
| 
 | |
| /*     Decode ORDER */
 | |
| 
 | |
|     if (lsame_(order, "B")) {
 | |
| 	iorder = 2;
 | |
|     } else if (lsame_(order, "E")) {
 | |
| 	iorder = 1;
 | |
|     } else {
 | |
| 	iorder = 0;
 | |
|     }
 | |
| 
 | |
| /*     Check for Errors */
 | |
| 
 | |
|     if (irange <= 0) {
 | |
| 	*info = -1;
 | |
|     } else if (iorder <= 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (irange == 2) {
 | |
| 	if (*vl >= *vu) {
 | |
| 	    *info = -5;
 | |
| 	}
 | |
|     } else if (irange == 3 && (*il < 1 || *il > f2cmax(1,*n))) {
 | |
| 	*info = -6;
 | |
|     } else if (irange == 3 && (*iu < f2cmin(*n,*il) || *iu > *n)) {
 | |
| 	*info = -7;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DSTEBZ", &i__1, (ftnlen)6);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Initialize error flags */
 | |
| 
 | |
|     *info = 0;
 | |
|     ncnvrg = FALSE_;
 | |
|     toofew = FALSE_;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     *m = 0;
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Simplifications: */
 | |
| 
 | |
|     if (irange == 3 && *il == 1 && *iu == *n) {
 | |
| 	irange = 1;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| /*     NB is the minimum vector length for vector bisection, or 0 */
 | |
| /*     if only scalar is to be done. */
 | |
| 
 | |
|     safemn = dlamch_("S");
 | |
|     ulp = dlamch_("P");
 | |
|     rtoli = ulp * 2.;
 | |
|     nb = ilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 	    ftnlen)1);
 | |
|     if (nb <= 1) {
 | |
| 	nb = 0;
 | |
|     }
 | |
| 
 | |
| /*     Special Case when N=1 */
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	*nsplit = 1;
 | |
| 	isplit[1] = 1;
 | |
| 	if (irange == 2 && (*vl >= d__[1] || *vu < d__[1])) {
 | |
| 	    *m = 0;
 | |
| 	} else {
 | |
| 	    w[1] = d__[1];
 | |
| 	    iblock[1] = 1;
 | |
| 	    *m = 1;
 | |
| 	}
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Compute Splitting Points */
 | |
| 
 | |
|     *nsplit = 1;
 | |
|     work[*n] = 0.;
 | |
|     pivmin = 1.;
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| /* Computing 2nd power */
 | |
| 	d__1 = e[j - 1];
 | |
| 	tmp1 = d__1 * d__1;
 | |
| /* Computing 2nd power */
 | |
| 	d__2 = ulp;
 | |
| 	if ((d__1 = d__[j] * d__[j - 1], abs(d__1)) * (d__2 * d__2) + safemn 
 | |
| 		> tmp1) {
 | |
| 	    isplit[*nsplit] = j - 1;
 | |
| 	    ++(*nsplit);
 | |
| 	    work[j - 1] = 0.;
 | |
| 	} else {
 | |
| 	    work[j - 1] = tmp1;
 | |
| 	    pivmin = f2cmax(pivmin,tmp1);
 | |
| 	}
 | |
| /* L10: */
 | |
|     }
 | |
|     isplit[*nsplit] = *n;
 | |
|     pivmin *= safemn;
 | |
| 
 | |
| /*     Compute Interval and ATOLI */
 | |
| 
 | |
|     if (irange == 3) {
 | |
| 
 | |
| /*        RANGE='I': Compute the interval containing eigenvalues */
 | |
| /*                   IL through IU. */
 | |
| 
 | |
| /*        Compute Gershgorin interval for entire (split) matrix */
 | |
| /*        and use it as the initial interval */
 | |
| 
 | |
| 	gu = d__[1];
 | |
| 	gl = d__[1];
 | |
| 	tmp1 = 0.;
 | |
| 
 | |
| 	i__1 = *n - 1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    tmp2 = sqrt(work[j]);
 | |
| /* Computing MAX */
 | |
| 	    d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
 | |
| 	    gu = f2cmax(d__1,d__2);
 | |
| /* Computing MIN */
 | |
| 	    d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
 | |
| 	    gl = f2cmin(d__1,d__2);
 | |
| 	    tmp1 = tmp2;
 | |
| /* L20: */
 | |
| 	}
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	d__1 = gu, d__2 = d__[*n] + tmp1;
 | |
| 	gu = f2cmax(d__1,d__2);
 | |
| /* Computing MIN */
 | |
| 	d__1 = gl, d__2 = d__[*n] - tmp1;
 | |
| 	gl = f2cmin(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 	d__1 = abs(gl), d__2 = abs(gu);
 | |
| 	tnorm = f2cmax(d__1,d__2);
 | |
| 	gl = gl - tnorm * 2.1 * ulp * *n - pivmin * 4.2000000000000002;
 | |
| 	gu = gu + tnorm * 2.1 * ulp * *n + pivmin * 2.1;
 | |
| 
 | |
| /*        Compute Iteration parameters */
 | |
| 
 | |
| 	itmax = (integer) ((log(tnorm + pivmin) - log(pivmin)) / log(2.)) + 2;
 | |
| 	if (*abstol <= 0.) {
 | |
| 	    atoli = ulp * tnorm;
 | |
| 	} else {
 | |
| 	    atoli = *abstol;
 | |
| 	}
 | |
| 
 | |
| 	work[*n + 1] = gl;
 | |
| 	work[*n + 2] = gl;
 | |
| 	work[*n + 3] = gu;
 | |
| 	work[*n + 4] = gu;
 | |
| 	work[*n + 5] = gl;
 | |
| 	work[*n + 6] = gu;
 | |
| 	iwork[1] = -1;
 | |
| 	iwork[2] = -1;
 | |
| 	iwork[3] = *n + 1;
 | |
| 	iwork[4] = *n + 1;
 | |
| 	iwork[5] = *il - 1;
 | |
| 	iwork[6] = *iu;
 | |
| 
 | |
| 	dlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, &pivmin, 
 | |
| 		&d__[1], &e[1], &work[1], &iwork[5], &work[*n + 1], &work[*n 
 | |
| 		+ 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);
 | |
| 
 | |
| 	if (iwork[6] == *iu) {
 | |
| 	    wl = work[*n + 1];
 | |
| 	    wlu = work[*n + 3];
 | |
| 	    nwl = iwork[1];
 | |
| 	    wu = work[*n + 4];
 | |
| 	    wul = work[*n + 2];
 | |
| 	    nwu = iwork[4];
 | |
| 	} else {
 | |
| 	    wl = work[*n + 2];
 | |
| 	    wlu = work[*n + 4];
 | |
| 	    nwl = iwork[2];
 | |
| 	    wu = work[*n + 3];
 | |
| 	    wul = work[*n + 1];
 | |
| 	    nwu = iwork[3];
 | |
| 	}
 | |
| 
 | |
| 	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
 | |
| 	    *info = 4;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        RANGE='A' or 'V' -- Set ATOLI */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = d__[*n], abs(d__1)) + (
 | |
| 		d__2 = e[*n - 1], abs(d__2));
 | |
| 	tnorm = f2cmax(d__3,d__4);
 | |
| 
 | |
| 	i__1 = *n - 1;
 | |
| 	for (j = 2; j <= i__1; ++j) {
 | |
| /* Computing MAX */
 | |
| 	    d__4 = tnorm, d__5 = (d__1 = d__[j], abs(d__1)) + (d__2 = e[j - 1]
 | |
| 		    , abs(d__2)) + (d__3 = e[j], abs(d__3));
 | |
| 	    tnorm = f2cmax(d__4,d__5);
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
| 	if (*abstol <= 0.) {
 | |
| 	    atoli = ulp * tnorm;
 | |
| 	} else {
 | |
| 	    atoli = *abstol;
 | |
| 	}
 | |
| 
 | |
| 	if (irange == 2) {
 | |
| 	    wl = *vl;
 | |
| 	    wu = *vu;
 | |
| 	} else {
 | |
| 	    wl = 0.;
 | |
| 	    wu = 0.;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU. */
 | |
| /*     NWL accumulates the number of eigenvalues .le. WL, */
 | |
| /*     NWU accumulates the number of eigenvalues .le. WU */
 | |
| 
 | |
|     *m = 0;
 | |
|     iend = 0;
 | |
|     *info = 0;
 | |
|     nwl = 0;
 | |
|     nwu = 0;
 | |
| 
 | |
|     i__1 = *nsplit;
 | |
|     for (jb = 1; jb <= i__1; ++jb) {
 | |
| 	ioff = iend;
 | |
| 	ibegin = ioff + 1;
 | |
| 	iend = isplit[jb];
 | |
| 	in = iend - ioff;
 | |
| 
 | |
| 	if (in == 1) {
 | |
| 
 | |
| /*           Special Case -- IN=1 */
 | |
| 
 | |
| 	    if (irange == 1 || wl >= d__[ibegin] - pivmin) {
 | |
| 		++nwl;
 | |
| 	    }
 | |
| 	    if (irange == 1 || wu >= d__[ibegin] - pivmin) {
 | |
| 		++nwu;
 | |
| 	    }
 | |
| 	    if (irange == 1 || wl < d__[ibegin] - pivmin && wu >= d__[ibegin] 
 | |
| 		    - pivmin) {
 | |
| 		++(*m);
 | |
| 		w[*m] = d__[ibegin];
 | |
| 		iblock[*m] = jb;
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           General Case -- IN > 1 */
 | |
| 
 | |
| /*           Compute Gershgorin Interval */
 | |
| /*           and use it as the initial interval */
 | |
| 
 | |
| 	    gu = d__[ibegin];
 | |
| 	    gl = d__[ibegin];
 | |
| 	    tmp1 = 0.;
 | |
| 
 | |
| 	    i__2 = iend - 1;
 | |
| 	    for (j = ibegin; j <= i__2; ++j) {
 | |
| 		tmp2 = (d__1 = e[j], abs(d__1));
 | |
| /* Computing MAX */
 | |
| 		d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
 | |
| 		gu = f2cmax(d__1,d__2);
 | |
| /* Computing MIN */
 | |
| 		d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
 | |
| 		gl = f2cmin(d__1,d__2);
 | |
| 		tmp1 = tmp2;
 | |
| /* L40: */
 | |
| 	    }
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	    d__1 = gu, d__2 = d__[iend] + tmp1;
 | |
| 	    gu = f2cmax(d__1,d__2);
 | |
| /* Computing MIN */
 | |
| 	    d__1 = gl, d__2 = d__[iend] - tmp1;
 | |
| 	    gl = f2cmin(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 	    d__1 = abs(gl), d__2 = abs(gu);
 | |
| 	    bnorm = f2cmax(d__1,d__2);
 | |
| 	    gl = gl - bnorm * 2.1 * ulp * in - pivmin * 2.1;
 | |
| 	    gu = gu + bnorm * 2.1 * ulp * in + pivmin * 2.1;
 | |
| 
 | |
| /*           Compute ATOLI for the current submatrix */
 | |
| 
 | |
| 	    if (*abstol <= 0.) {
 | |
| /* Computing MAX */
 | |
| 		d__1 = abs(gl), d__2 = abs(gu);
 | |
| 		atoli = ulp * f2cmax(d__1,d__2);
 | |
| 	    } else {
 | |
| 		atoli = *abstol;
 | |
| 	    }
 | |
| 
 | |
| 	    if (irange > 1) {
 | |
| 		if (gu < wl) {
 | |
| 		    nwl += in;
 | |
| 		    nwu += in;
 | |
| 		    goto L70;
 | |
| 		}
 | |
| 		gl = f2cmax(gl,wl);
 | |
| 		gu = f2cmin(gu,wu);
 | |
| 		if (gl >= gu) {
 | |
| 		    goto L70;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Set Up Initial Interval */
 | |
| 
 | |
| 	    work[*n + 1] = gl;
 | |
| 	    work[*n + in + 1] = gu;
 | |
| 	    dlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, &
 | |
| 		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
 | |
| 		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
 | |
| 		    w[*m + 1], &iblock[*m + 1], &iinfo);
 | |
| 
 | |
| 	    nwl += iwork[1];
 | |
| 	    nwu += iwork[in + 1];
 | |
| 	    iwoff = *m - iwork[1];
 | |
| 
 | |
| /*           Compute Eigenvalues */
 | |
| 
 | |
| 	    itmax = (integer) ((log(gu - gl + pivmin) - log(pivmin)) / log(2.)
 | |
| 		    ) + 2;
 | |
| 	    dlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, &
 | |
| 		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
 | |
| 		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
 | |
| 		     &w[*m + 1], &iblock[*m + 1], &iinfo);
 | |
| 
 | |
| /*           Copy Eigenvalues Into W and IBLOCK */
 | |
| /*           Use -JB for block number for unconverged eigenvalues. */
 | |
| 
 | |
| 	    i__2 = iout;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;
 | |
| 
 | |
| /*              Flag non-convergence. */
 | |
| 
 | |
| 		if (j > iout - iinfo) {
 | |
| 		    ncnvrg = TRUE_;
 | |
| 		    ib = -jb;
 | |
| 		} else {
 | |
| 		    ib = jb;
 | |
| 		}
 | |
| 		i__3 = iwork[j + in] + iwoff;
 | |
| 		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
 | |
| 		    w[je] = tmp1;
 | |
| 		    iblock[je] = ib;
 | |
| /* L50: */
 | |
| 		}
 | |
| /* L60: */
 | |
| 	    }
 | |
| 
 | |
| 	    *m += im;
 | |
| 	}
 | |
| L70:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
| /*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */
 | |
| /*     If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */
 | |
| 
 | |
|     if (irange == 3) {
 | |
| 	im = 0;
 | |
| 	idiscl = *il - 1 - nwl;
 | |
| 	idiscu = nwu - *iu;
 | |
| 
 | |
| 	if (idiscl > 0 || idiscu > 0) {
 | |
| 	    i__1 = *m;
 | |
| 	    for (je = 1; je <= i__1; ++je) {
 | |
| 		if (w[je] <= wlu && idiscl > 0) {
 | |
| 		    --idiscl;
 | |
| 		} else if (w[je] >= wul && idiscu > 0) {
 | |
| 		    --idiscu;
 | |
| 		} else {
 | |
| 		    ++im;
 | |
| 		    w[im] = w[je];
 | |
| 		    iblock[im] = iblock[je];
 | |
| 		}
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	    *m = im;
 | |
| 	}
 | |
| 	if (idiscl > 0 || idiscu > 0) {
 | |
| 
 | |
| /*           Code to deal with effects of bad arithmetic: */
 | |
| /*           Some low eigenvalues to be discarded are not in (WL,WLU], */
 | |
| /*           or high eigenvalues to be discarded are not in (WUL,WU] */
 | |
| /*           so just kill off the smallest IDISCL/largest IDISCU */
 | |
| /*           eigenvalues, by simply finding the smallest/largest */
 | |
| /*           eigenvalue(s). */
 | |
| 
 | |
| /*           (If N(w) is monotone non-decreasing, this should never */
 | |
| /*               happen.) */
 | |
| 
 | |
| 	    if (idiscl > 0) {
 | |
| 		wkill = wu;
 | |
| 		i__1 = idiscl;
 | |
| 		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
 | |
| 		    iw = 0;
 | |
| 		    i__2 = *m;
 | |
| 		    for (je = 1; je <= i__2; ++je) {
 | |
| 			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
 | |
| 			    iw = je;
 | |
| 			    wkill = w[je];
 | |
| 			}
 | |
| /* L90: */
 | |
| 		    }
 | |
| 		    iblock[iw] = 0;
 | |
| /* L100: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (idiscu > 0) {
 | |
| 
 | |
| 		wkill = wl;
 | |
| 		i__1 = idiscu;
 | |
| 		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
 | |
| 		    iw = 0;
 | |
| 		    i__2 = *m;
 | |
| 		    for (je = 1; je <= i__2; ++je) {
 | |
| 			if (iblock[je] != 0 && (w[je] > wkill || iw == 0)) {
 | |
| 			    iw = je;
 | |
| 			    wkill = w[je];
 | |
| 			}
 | |
| /* L110: */
 | |
| 		    }
 | |
| 		    iblock[iw] = 0;
 | |
| /* L120: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    im = 0;
 | |
| 	    i__1 = *m;
 | |
| 	    for (je = 1; je <= i__1; ++je) {
 | |
| 		if (iblock[je] != 0) {
 | |
| 		    ++im;
 | |
| 		    w[im] = w[je];
 | |
| 		    iblock[im] = iblock[je];
 | |
| 		}
 | |
| /* L130: */
 | |
| 	    }
 | |
| 	    *m = im;
 | |
| 	}
 | |
| 	if (idiscl < 0 || idiscu < 0) {
 | |
| 	    toofew = TRUE_;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If ORDER='B', do nothing -- the eigenvalues are already sorted */
 | |
| /*        by block. */
 | |
| /*     If ORDER='E', sort the eigenvalues from smallest to largest */
 | |
| 
 | |
|     if (iorder == 1 && *nsplit > 1) {
 | |
| 	i__1 = *m - 1;
 | |
| 	for (je = 1; je <= i__1; ++je) {
 | |
| 	    ie = 0;
 | |
| 	    tmp1 = w[je];
 | |
| 	    i__2 = *m;
 | |
| 	    for (j = je + 1; j <= i__2; ++j) {
 | |
| 		if (w[j] < tmp1) {
 | |
| 		    ie = j;
 | |
| 		    tmp1 = w[j];
 | |
| 		}
 | |
| /* L140: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (ie != 0) {
 | |
| 		itmp1 = iblock[ie];
 | |
| 		w[ie] = w[je];
 | |
| 		iblock[ie] = iblock[je];
 | |
| 		w[je] = tmp1;
 | |
| 		iblock[je] = itmp1;
 | |
| 	    }
 | |
| /* L150: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     *info = 0;
 | |
|     if (ncnvrg) {
 | |
| 	++(*info);
 | |
|     }
 | |
|     if (toofew) {
 | |
| 	*info += 2;
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DSTEBZ */
 | |
| 
 | |
| } /* dstebz_ */
 | |
| 
 |