1136 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1136 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static real c_b36 = 0.f;
 | |
| static real c_b37 = 1.f;
 | |
| 
 | |
| /* > \brief <b> SGEGS computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
 | |
| ices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGEGS + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegs.f
 | |
| "> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegs.f
 | |
| "> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegs.f
 | |
| "> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR, */
 | |
| /*                         ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, */
 | |
| /*                         LWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBVSL, JOBVSR */
 | |
| /*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N */
 | |
| /*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
 | |
| /*      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
 | |
| /*      $                   VSR( LDVSR, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > This routine is deprecated and has been replaced by routine SGGES. */
 | |
| /* > */
 | |
| /* > SGEGS computes the eigenvalues, real Schur form, and, optionally, */
 | |
| /* > left and or/right Schur vectors of a real matrix pair (A,B). */
 | |
| /* > Given two square matrices A and B, the generalized real Schur */
 | |
| /* > factorization has the form */
 | |
| /* > */
 | |
| /* >   A = Q*S*Z**T,  B = Q*T*Z**T */
 | |
| /* > */
 | |
| /* > where Q and Z are orthogonal matrices, T is upper triangular, and S */
 | |
| /* > is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal */
 | |
| /* > blocks, the 2-by-2 blocks corresponding to complex conjugate pairs */
 | |
| /* > of eigenvalues of (A,B).  The columns of Q are the left Schur vectors */
 | |
| /* > and the columns of Z are the right Schur vectors. */
 | |
| /* > */
 | |
| /* > If only the eigenvalues of (A,B) are needed, the driver routine */
 | |
| /* > SGEGV should be used instead.  See SGEGV for a description of the */
 | |
| /* > eigenvalues of the generalized nonsymmetric eigenvalue problem */
 | |
| /* > (GNEP). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBVSL */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVSL is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the left Schur vectors; */
 | |
| /* >          = 'V':  compute the left Schur vectors (returned in VSL). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVSR */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVSR is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the right Schur vectors; */
 | |
| /* >          = 'V':  compute the right Schur vectors (returned in VSR). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A, B, VSL, and VSR.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA, N) */
 | |
| /* >          On entry, the matrix A. */
 | |
| /* >          On exit, the upper quasi-triangular matrix S from the */
 | |
| /* >          generalized real Schur factorization. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB, N) */
 | |
| /* >          On entry, the matrix B. */
 | |
| /* >          On exit, the upper triangular matrix T from the generalized */
 | |
| /* >          real Schur factorization. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAR */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAR is REAL array, dimension (N) */
 | |
| /* >          The real parts of each scalar alpha defining an eigenvalue */
 | |
| /* >          of GNEP. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAI */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAI is REAL array, dimension (N) */
 | |
| /* >          The imaginary parts of each scalar alpha defining an */
 | |
| /* >          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th */
 | |
| /* >          eigenvalue is real; if positive, then the j-th and (j+1)-st */
 | |
| /* >          eigenvalues are a complex conjugate pair, with */
 | |
| /* >          ALPHAI(j+1) = -ALPHAI(j). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL array, dimension (N) */
 | |
| /* >          The scalars beta that define the eigenvalues of GNEP. */
 | |
| /* >          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
 | |
| /* >          beta = BETA(j) represent the j-th eigenvalue of the matrix */
 | |
| /* >          pair (A,B), in one of the forms lambda = alpha/beta or */
 | |
| /* >          mu = beta/alpha.  Since either lambda or mu may overflow, */
 | |
| /* >          they should not, in general, be computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VSL */
 | |
| /* > \verbatim */
 | |
| /* >          VSL is REAL array, dimension (LDVSL,N) */
 | |
| /* >          If JOBVSL = 'V', the matrix of left Schur vectors Q. */
 | |
| /* >          Not referenced if JOBVSL = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVSL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVSL is INTEGER */
 | |
| /* >          The leading dimension of the matrix VSL. LDVSL >=1, and */
 | |
| /* >          if JOBVSL = 'V', LDVSL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VSR */
 | |
| /* > \verbatim */
 | |
| /* >          VSR is REAL array, dimension (LDVSR,N) */
 | |
| /* >          If JOBVSR = 'V', the matrix of right Schur vectors Z. */
 | |
| /* >          Not referenced if JOBVSR = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVSR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVSR is INTEGER */
 | |
| /* >          The leading dimension of the matrix VSR. LDVSR >= 1, and */
 | |
| /* >          if JOBVSR = 'V', LDVSR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK.  LWORK >= f2cmax(1,4*N). */
 | |
| /* >          For good performance, LWORK must generally be larger. */
 | |
| /* >          To compute the optimal value of LWORK, call ILAENV to get */
 | |
| /* >          blocksizes (for SGEQRF, SORMQR, and SORGQR.)  Then compute: */
 | |
| /* >          NB  -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR */
 | |
| /* >          The optimal LWORK is  2*N + N*(NB+1). */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          = 1,...,N: */
 | |
| /* >                The QZ iteration failed.  (A,B) are not in Schur */
 | |
| /* >                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
 | |
| /* >                be correct for j=INFO+1,...,N. */
 | |
| /* >          > N:  errors that usually indicate LAPACK problems: */
 | |
| /* >                =N+1: error return from SGGBAL */
 | |
| /* >                =N+2: error return from SGEQRF */
 | |
| /* >                =N+3: error return from SORMQR */
 | |
| /* >                =N+4: error return from SORGQR */
 | |
| /* >                =N+5: error return from SGGHRD */
 | |
| /* >                =N+6: error return from SHGEQZ (other than failed */
 | |
| /* >                                                iteration) */
 | |
| /* >                =N+7: error return from SGGBAK (computing VSL) */
 | |
| /* >                =N+8: error return from SGGBAK (computing VSR) */
 | |
| /* >                =N+9: error return from SLASCL (various places) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realGEeigen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int sgegs_(char *jobvsl, char *jobvsr, integer *n, real *a, 
 | |
| 	integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real 
 | |
| 	*beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *
 | |
| 	work, integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, 
 | |
| 	    vsr_dim1, vsr_offset, i__1, i__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real anrm, bnrm;
 | |
|     integer itau, lopt;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer ileft, iinfo, icols;
 | |
|     logical ilvsl;
 | |
|     integer iwork;
 | |
|     logical ilvsr;
 | |
|     integer irows, nb;
 | |
|     extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, integer *
 | |
| 	    ), sggbal_(char *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, integer *, integer *, real *, real *, real *, 
 | |
| 	    integer *);
 | |
|     logical ilascl, ilbscl;
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     real safmin;
 | |
|     extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, integer *, real *, integer *
 | |
| 	    , real *, integer *, integer *), xerbla_(char *, 
 | |
| 	    integer *);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     real bignum;
 | |
|     extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *);
 | |
|     integer ijobvl, iright;
 | |
|     extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, integer *, integer *);
 | |
|     integer ijobvr;
 | |
|     extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, integer *), slaset_(char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *);
 | |
|     real anrmto;
 | |
|     integer lwkmin, nb1, nb2, nb3;
 | |
|     real bnrmto;
 | |
|     extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, integer *, real *
 | |
| 	    , real *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     real smlnum;
 | |
|     extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *);
 | |
|     integer lwkopt;
 | |
|     logical lquery;
 | |
|     extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     integer ihi, ilo;
 | |
|     real eps;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --alphar;
 | |
|     --alphai;
 | |
|     --beta;
 | |
|     vsl_dim1 = *ldvsl;
 | |
|     vsl_offset = 1 + vsl_dim1 * 1;
 | |
|     vsl -= vsl_offset;
 | |
|     vsr_dim1 = *ldvsr;
 | |
|     vsr_offset = 1 + vsr_dim1 * 1;
 | |
|     vsr -= vsr_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (lsame_(jobvsl, "N")) {
 | |
| 	ijobvl = 1;
 | |
| 	ilvsl = FALSE_;
 | |
|     } else if (lsame_(jobvsl, "V")) {
 | |
| 	ijobvl = 2;
 | |
| 	ilvsl = TRUE_;
 | |
|     } else {
 | |
| 	ijobvl = -1;
 | |
| 	ilvsl = FALSE_;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(jobvsr, "N")) {
 | |
| 	ijobvr = 1;
 | |
| 	ilvsr = FALSE_;
 | |
|     } else if (lsame_(jobvsr, "V")) {
 | |
| 	ijobvr = 2;
 | |
| 	ilvsr = TRUE_;
 | |
|     } else {
 | |
| 	ijobvr = -1;
 | |
| 	ilvsr = FALSE_;
 | |
|     }
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = *n << 2;
 | |
|     lwkmin = f2cmax(i__1,1);
 | |
|     lwkopt = lwkmin;
 | |
|     work[1] = (real) lwkopt;
 | |
|     lquery = *lwork == -1;
 | |
|     *info = 0;
 | |
|     if (ijobvl <= 0) {
 | |
| 	*info = -1;
 | |
|     } else if (ijobvr <= 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
 | |
| 	*info = -12;
 | |
|     } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
 | |
| 	*info = -14;
 | |
|     } else if (*lwork < lwkmin && ! lquery) {
 | |
| 	*info = -16;
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 		ftnlen)1);
 | |
| 	nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | |
| 		ftnlen)1);
 | |
| 	nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | |
| 		ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 	i__1 = f2cmax(nb1,nb2);
 | |
| 	nb = f2cmax(i__1,nb3);
 | |
| 	lopt = (*n << 1) + *n * (nb + 1);
 | |
| 	work[1] = (real) lopt;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGEGS ", &i__1);
 | |
| 	return 0;
 | |
|     } else if (lquery) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("E") * slamch_("B");
 | |
|     safmin = slamch_("S");
 | |
|     smlnum = *n * safmin / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
 | |
|     ilascl = FALSE_;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 	anrmto = smlnum;
 | |
| 	ilascl = TRUE_;
 | |
|     } else if (anrm > bignum) {
 | |
| 	anrmto = bignum;
 | |
| 	ilascl = TRUE_;
 | |
|     }
 | |
| 
 | |
|     if (ilascl) {
 | |
| 	slascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 9;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
 | |
|     ilbscl = FALSE_;
 | |
|     if (bnrm > 0.f && bnrm < smlnum) {
 | |
| 	bnrmto = smlnum;
 | |
| 	ilbscl = TRUE_;
 | |
|     } else if (bnrm > bignum) {
 | |
| 	bnrmto = bignum;
 | |
| 	ilbscl = TRUE_;
 | |
|     }
 | |
| 
 | |
|     if (ilbscl) {
 | |
| 	slascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 9;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Permute the matrix to make it more nearly triangular */
 | |
| /*     Workspace layout:  (2*N words -- "work..." not actually used) */
 | |
| /*        left_permutation, right_permutation, work... */
 | |
| 
 | |
|     ileft = 1;
 | |
|     iright = *n + 1;
 | |
|     iwork = iright + *n;
 | |
|     sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 | |
| 	    ileft], &work[iright], &work[iwork], &iinfo);
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 1;
 | |
| 	goto L10;
 | |
|     }
 | |
| 
 | |
| /*     Reduce B to triangular form, and initialize VSL and/or VSR */
 | |
| /*     Workspace layout:  ("work..." must have at least N words) */
 | |
| /*        left_permutation, right_permutation, tau, work... */
 | |
| 
 | |
|     irows = ihi + 1 - ilo;
 | |
|     icols = *n + 1 - ilo;
 | |
|     itau = iwork;
 | |
|     iwork = itau + irows;
 | |
|     i__1 = *lwork + 1 - iwork;
 | |
|     sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 | |
| 	    iwork], &i__1, &iinfo);
 | |
|     if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
|     }
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 2;
 | |
| 	goto L10;
 | |
|     }
 | |
| 
 | |
|     i__1 = *lwork + 1 - iwork;
 | |
|     sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 | |
| 	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
 | |
| 	    iinfo);
 | |
|     if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
|     }
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 3;
 | |
| 	goto L10;
 | |
|     }
 | |
| 
 | |
|     if (ilvsl) {
 | |
| 	slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
 | |
| 	i__1 = irows - 1;
 | |
| 	i__2 = irows - 1;
 | |
| 	slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo 
 | |
| 		+ 1 + ilo * vsl_dim1], ldvsl);
 | |
| 	i__1 = *lwork + 1 - iwork;
 | |
| 	sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
 | |
| 		work[itau], &work[iwork], &i__1, &iinfo);
 | |
| 	if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	    lwkopt = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 4;
 | |
| 	    goto L10;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (ilvsr) {
 | |
| 	slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
 | |
|     }
 | |
| 
 | |
| /*     Reduce to generalized Hessenberg form */
 | |
| 
 | |
|     sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 | |
| 	    ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 5;
 | |
| 	goto L10;
 | |
|     }
 | |
| 
 | |
| /*     Perform QZ algorithm, computing Schur vectors if desired */
 | |
| /*     Workspace layout:  ("work..." must have at least 1 word) */
 | |
| /*        left_permutation, right_permutation, work... */
 | |
| 
 | |
|     iwork = itau;
 | |
|     i__1 = *lwork + 1 - iwork;
 | |
|     shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 | |
| 	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
 | |
| 	    , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo);
 | |
|     if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
|     }
 | |
|     if (iinfo != 0) {
 | |
| 	if (iinfo > 0 && iinfo <= *n) {
 | |
| 	    *info = iinfo;
 | |
| 	} else if (iinfo > *n && iinfo <= *n << 1) {
 | |
| 	    *info = iinfo - *n;
 | |
| 	} else {
 | |
| 	    *info = *n + 6;
 | |
| 	}
 | |
| 	goto L10;
 | |
|     }
 | |
| 
 | |
| /*     Apply permutation to VSL and VSR */
 | |
| 
 | |
|     if (ilvsl) {
 | |
| 	sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
 | |
| 		vsl_offset], ldvsl, &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 7;
 | |
| 	    goto L10;
 | |
| 	}
 | |
|     }
 | |
|     if (ilvsr) {
 | |
| 	sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
 | |
| 		vsr_offset], ldvsr, &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 8;
 | |
| 	    goto L10;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling */
 | |
| 
 | |
|     if (ilascl) {
 | |
| 	slascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 9;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 9;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 9;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (ilbscl) {
 | |
| 	slascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 9;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	slascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 9;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| L10:
 | |
|     work[1] = (real) lwkopt;
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SGEGS */
 | |
| 
 | |
| } /* sgegs_ */
 | |
| 
 |