338 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZHEEQUB
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZHEEQUB + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheequb.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheequb.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheequb.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       DOUBLE PRECISION   AMAX, SCOND
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), WORK( * )
 | 
						|
*       DOUBLE PRECISION   S( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZHEEQUB computes row and column scalings intended to equilibrate a
 | 
						|
*> Hermitian matrix A and reduce its condition number
 | 
						|
*> (with respect to the two-norm).  S contains the scale factors,
 | 
						|
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 | 
						|
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 | 
						|
*> choice of S puts the condition number of B within a factor N of the
 | 
						|
*> smallest possible condition number over all possible diagonal
 | 
						|
*> scalings.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangles of A and B are stored;
 | 
						|
*>          = 'L':  Lower triangles of A and B are stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The N-by-N Hermitian matrix whose scaling
 | 
						|
*>          factors are to be computed.  Only the diagonal elements of A
 | 
						|
*>          are referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          If INFO = 0, S contains the scale factors for A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCOND
 | 
						|
*> \verbatim
 | 
						|
*>          SCOND is DOUBLE PRECISION
 | 
						|
*>          If INFO = 0, S contains the ratio of the smallest S(i) to
 | 
						|
*>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 | 
						|
*>          large nor too small, it is not worth scaling by S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AMAX
 | 
						|
*> \verbatim
 | 
						|
*>          AMAX is DOUBLE PRECISION
 | 
						|
*>          Absolute value of largest matrix element.  If AMAX is very
 | 
						|
*>          close to overflow or very close to underflow, the matrix
 | 
						|
*>          should be scaled.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (3*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date April 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16HEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.1) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     April 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
      DOUBLE PRECISION   AMAX, SCOND
 | 
						|
      CHARACTER          UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), WORK( * )
 | 
						|
      DOUBLE PRECISION   S( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
      INTEGER            MAX_ITER
 | 
						|
      PARAMETER          ( MAX_ITER = 100 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, ITER
 | 
						|
      DOUBLE PRECISION   AVG, STD, TOL, C0, C1, C2, T, U, SI, D,
 | 
						|
     $                   BASE, SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
 | 
						|
      LOGICAL            UP
 | 
						|
      COMPLEX*16         ZDUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           DLAMCH, LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLASSQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DIMAG, INT, LOG, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function Definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | 
						|
*
 | 
						|
*     Test input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF (.NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
        INFO = -1
 | 
						|
      ELSE IF ( N .LT. 0 ) THEN
 | 
						|
        INFO = -2
 | 
						|
      ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
 | 
						|
        INFO = -4
 | 
						|
      END IF
 | 
						|
      IF ( INFO .NE. 0 ) THEN
 | 
						|
        CALL XERBLA( 'ZHEEQUB', -INFO )
 | 
						|
        RETURN
 | 
						|
      END IF
 | 
						|
 | 
						|
      UP = LSAME( UPLO, 'U' )
 | 
						|
      AMAX = ZERO
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ( N .EQ. 0 ) THEN
 | 
						|
        SCOND = ONE
 | 
						|
        RETURN
 | 
						|
      END IF
 | 
						|
 | 
						|
      DO I = 1, N
 | 
						|
        S( I ) = ZERO
 | 
						|
      END DO
 | 
						|
 | 
						|
      AMAX = ZERO
 | 
						|
      IF ( UP ) THEN
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = 1, J-1
 | 
						|
               S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
 | 
						|
               S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
 | 
						|
               AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
 | 
						|
            END DO
 | 
						|
            S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
 | 
						|
            AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, N
 | 
						|
            S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
 | 
						|
            AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
 | 
						|
            DO I = J+1, N
 | 
						|
               S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
 | 
						|
               S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
 | 
						|
               AMAX = MAX( AMAX, CABS1( A(I, J ) ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      DO J = 1, N
 | 
						|
         S( J ) = 1.0D+0 / S( J )
 | 
						|
      END DO
 | 
						|
 | 
						|
      TOL = ONE / SQRT( 2.0D0 * N )
 | 
						|
 | 
						|
      DO ITER = 1, MAX_ITER
 | 
						|
         SCALE = 0.0D+0
 | 
						|
         SUMSQ = 0.0D+0
 | 
						|
*       beta = |A|s
 | 
						|
        DO I = 1, N
 | 
						|
           WORK( I ) = ZERO
 | 
						|
        END DO
 | 
						|
        IF ( UP ) THEN
 | 
						|
           DO J = 1, N
 | 
						|
              DO I = 1, J-1
 | 
						|
                 T = CABS1( A( I, J ) )
 | 
						|
                 WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
 | 
						|
                 WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
 | 
						|
              END DO
 | 
						|
              WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
 | 
						|
           END DO
 | 
						|
        ELSE
 | 
						|
           DO J = 1, N
 | 
						|
              WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
 | 
						|
              DO I = J+1, N
 | 
						|
                 T = CABS1( A( I, J ) )
 | 
						|
                 WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
 | 
						|
                 WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
 | 
						|
              END DO
 | 
						|
           END DO
 | 
						|
        END IF
 | 
						|
 | 
						|
*       avg = s^T beta / n
 | 
						|
        AVG = 0.0D+0
 | 
						|
        DO I = 1, N
 | 
						|
          AVG = AVG + S( I )*WORK( I )
 | 
						|
        END DO
 | 
						|
        AVG = AVG / N
 | 
						|
 | 
						|
        STD = 0.0D+0
 | 
						|
        DO I = 2*N+1, 3*N
 | 
						|
           WORK( I ) = S( I-2*N ) * WORK( I-2*N ) - AVG
 | 
						|
        END DO
 | 
						|
        CALL ZLASSQ( N, WORK( 2*N+1 ), 1, SCALE, SUMSQ )
 | 
						|
        STD = SCALE * SQRT( SUMSQ / N )
 | 
						|
 | 
						|
        IF ( STD .LT. TOL * AVG ) GOTO 999
 | 
						|
 | 
						|
        DO I = 1, N
 | 
						|
          T = CABS1( A( I, I ) )
 | 
						|
          SI = S( I )
 | 
						|
          C2 = ( N-1 ) * T
 | 
						|
          C1 = ( N-2 ) * ( WORK( I ) - T*SI )
 | 
						|
          C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
 | 
						|
 | 
						|
          D = C1*C1 - 4*C0*C2
 | 
						|
          IF ( D .LE. 0 ) THEN
 | 
						|
            INFO = -1
 | 
						|
            RETURN
 | 
						|
          END IF
 | 
						|
          SI = -2*C0 / ( C1 + SQRT( D ) )
 | 
						|
 | 
						|
          D = SI - S(I)
 | 
						|
          U = ZERO
 | 
						|
          IF ( UP ) THEN
 | 
						|
            DO J = 1, I
 | 
						|
              T = CABS1( A( J, I ) )
 | 
						|
              U = U + S( J )*T
 | 
						|
              WORK( J ) = WORK( J ) + D*T
 | 
						|
            END DO
 | 
						|
            DO J = I+1,N
 | 
						|
              T = CABS1( A( I, J ) )
 | 
						|
              U = U + S( J )*T
 | 
						|
              WORK( J ) = WORK( J ) + D*T
 | 
						|
            END DO
 | 
						|
          ELSE
 | 
						|
            DO J = 1, I
 | 
						|
              T = CABS1( A( I, J ) )
 | 
						|
              U = U + S( J )*T
 | 
						|
              WORK( J ) = WORK( J ) + D*T
 | 
						|
            END DO
 | 
						|
            DO J = I+1,N
 | 
						|
              T = CABS1( A( J, I ) )
 | 
						|
              U = U + S( J )*T
 | 
						|
              WORK( J ) = WORK( J ) + D*T
 | 
						|
            END DO
 | 
						|
          END IF
 | 
						|
          AVG = AVG + ( U + WORK( I ) ) * D / N
 | 
						|
          S( I ) = SI
 | 
						|
        END DO
 | 
						|
 | 
						|
      END DO
 | 
						|
 | 
						|
 999  CONTINUE
 | 
						|
 | 
						|
      SMLNUM = DLAMCH( 'SAFEMIN' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      SMIN = BIGNUM
 | 
						|
      SMAX = ZERO
 | 
						|
      T = ONE / SQRT( AVG )
 | 
						|
      BASE = DLAMCH( 'B' )
 | 
						|
      U = ONE / LOG( BASE )
 | 
						|
      DO I = 1, N
 | 
						|
        S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
 | 
						|
        SMIN = MIN( SMIN, S( I ) )
 | 
						|
        SMAX = MAX( SMAX, S( I ) )
 | 
						|
      END DO
 | 
						|
      SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
 | 
						|
 | 
						|
      END
 |