524 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			524 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLALSD uses the singular value decomposition of A to solve the least squares problem.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLALSD + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slalsd.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slalsd.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slalsd.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
 | 
						|
*                          RANK, WORK, IWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
 | 
						|
*       REAL               RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               B( LDB, * ), D( * ), E( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLALSD uses the singular value decomposition of A to solve the least
 | 
						|
*> squares problem of finding X to minimize the Euclidean norm of each
 | 
						|
*> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
 | 
						|
*> are N-by-NRHS. The solution X overwrites B.
 | 
						|
*>
 | 
						|
*> The singular values of A smaller than RCOND times the largest
 | 
						|
*> singular value are treated as zero in solving the least squares
 | 
						|
*> problem; in this case a minimum norm solution is returned.
 | 
						|
*> The actual singular values are returned in D in ascending order.
 | 
						|
*>
 | 
						|
*> This code makes very mild assumptions about floating point
 | 
						|
*> arithmetic. It will work on machines with a guard digit in
 | 
						|
*> add/subtract, or on those binary machines without guard digits
 | 
						|
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
 | 
						|
*> It could conceivably fail on hexadecimal or decimal machines
 | 
						|
*> without guard digits, but we know of none.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>         = 'U': D and E define an upper bidiagonal matrix.
 | 
						|
*>         = 'L': D and E define a  lower bidiagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SMLSIZ
 | 
						|
*> \verbatim
 | 
						|
*>          SMLSIZ is INTEGER
 | 
						|
*>         The maximum size of the subproblems at the bottom of the
 | 
						|
*>         computation tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         The dimension of the  bidiagonal matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>         The number of columns of B. NRHS must be at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>         On entry D contains the main diagonal of the bidiagonal
 | 
						|
*>         matrix. On exit, if INFO = 0, D contains its singular values.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>         Contains the super-diagonal entries of the bidiagonal matrix.
 | 
						|
*>         On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,NRHS)
 | 
						|
*>         On input, B contains the right hand sides of the least
 | 
						|
*>         squares problem. On output, B contains the solution X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>         The leading dimension of B in the calling subprogram.
 | 
						|
*>         LDB must be at least max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>         The singular values of A less than or equal to RCOND times
 | 
						|
*>         the largest singular value are treated as zero in solving
 | 
						|
*>         the least squares problem. If RCOND is negative,
 | 
						|
*>         machine precision is used instead.
 | 
						|
*>         For example, if diag(S)*X=B were the least squares problem,
 | 
						|
*>         where diag(S) is a diagonal matrix of singular values, the
 | 
						|
*>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
 | 
						|
*>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
 | 
						|
*>         RCOND*max(S).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>         The number of singular values of A greater than RCOND times
 | 
						|
*>         the largest singular value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension at least
 | 
						|
*>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
 | 
						|
*>         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension at least
 | 
						|
*>         (3*N*NLVL + 11*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>         = 0:  successful exit.
 | 
						|
*>         < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>         > 0:  The algorithm failed to compute a singular value while
 | 
						|
*>               working on the submatrix lying in rows and columns
 | 
						|
*>               INFO/(N+1) through MOD(INFO,N+1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | 
						|
*>       California at Berkeley, USA \n
 | 
						|
*>     Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
 | 
						|
     $                   RANK, WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
 | 
						|
      REAL               RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               B( LDB, * ), D( * ), E( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
 | 
						|
     $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
 | 
						|
     $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
 | 
						|
     $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
 | 
						|
      REAL               CS, EPS, ORGNRM, R, RCND, SN, TOL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SLAMCH, SLANST
 | 
						|
      EXTERNAL           ISAMAX, SLAMCH, SLANST
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLALSA, SLARTG, SLASCL,
 | 
						|
     $                   SLASDA, SLASDQ, SLASET, SLASRT, SROT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, INT, LOG, REAL, SIGN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NRHS.LT.1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLALSD', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Set up the tolerance.
 | 
						|
*
 | 
						|
      IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
 | 
						|
         RCND = EPS
 | 
						|
      ELSE
 | 
						|
         RCND = RCOND
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RANK = 0
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      ELSE IF( N.EQ.1 ) THEN
 | 
						|
         IF( D( 1 ).EQ.ZERO ) THEN
 | 
						|
            CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
 | 
						|
         ELSE
 | 
						|
            RANK = 1
 | 
						|
            CALL SLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
 | 
						|
            D( 1 ) = ABS( D( 1 ) )
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Rotate the matrix if it is lower bidiagonal.
 | 
						|
*
 | 
						|
      IF( UPLO.EQ.'L' ) THEN
 | 
						|
         DO 10 I = 1, N - 1
 | 
						|
            CALL SLARTG( D( I ), E( I ), CS, SN, R )
 | 
						|
            D( I ) = R
 | 
						|
            E( I ) = SN*D( I+1 )
 | 
						|
            D( I+1 ) = CS*D( I+1 )
 | 
						|
            IF( NRHS.EQ.1 ) THEN
 | 
						|
               CALL SROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
 | 
						|
            ELSE
 | 
						|
               WORK( I*2-1 ) = CS
 | 
						|
               WORK( I*2 ) = SN
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
         IF( NRHS.GT.1 ) THEN
 | 
						|
            DO 30 I = 1, NRHS
 | 
						|
               DO 20 J = 1, N - 1
 | 
						|
                  CS = WORK( J*2-1 )
 | 
						|
                  SN = WORK( J*2 )
 | 
						|
                  CALL SROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
 | 
						|
   20          CONTINUE
 | 
						|
   30       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale.
 | 
						|
*
 | 
						|
      NM1 = N - 1
 | 
						|
      ORGNRM = SLANST( 'M', N, D, E )
 | 
						|
      IF( ORGNRM.EQ.ZERO ) THEN
 | 
						|
         CALL SLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
 | 
						|
      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
 | 
						|
*
 | 
						|
*     If N is smaller than the minimum divide size SMLSIZ, then solve
 | 
						|
*     the problem with another solver.
 | 
						|
*
 | 
						|
      IF( N.LE.SMLSIZ ) THEN
 | 
						|
         NWORK = 1 + N*N
 | 
						|
         CALL SLASET( 'A', N, N, ZERO, ONE, WORK, N )
 | 
						|
         CALL SLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
 | 
						|
     $                LDB, WORK( NWORK ), INFO )
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
 | 
						|
         DO 40 I = 1, N
 | 
						|
            IF( D( I ).LE.TOL ) THEN
 | 
						|
               CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
 | 
						|
            ELSE
 | 
						|
               CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
 | 
						|
     $                      LDB, INFO )
 | 
						|
               RANK = RANK + 1
 | 
						|
            END IF
 | 
						|
   40    CONTINUE
 | 
						|
         CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
 | 
						|
     $               WORK( NWORK ), N )
 | 
						|
         CALL SLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
 | 
						|
*
 | 
						|
*        Unscale.
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | 
						|
         CALL SLASRT( 'D', N, D, INFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Book-keeping and setting up some constants.
 | 
						|
*
 | 
						|
      NLVL = INT( LOG( REAL( N ) / REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
 | 
						|
*
 | 
						|
      SMLSZP = SMLSIZ + 1
 | 
						|
*
 | 
						|
      U = 1
 | 
						|
      VT = 1 + SMLSIZ*N
 | 
						|
      DIFL = VT + SMLSZP*N
 | 
						|
      DIFR = DIFL + NLVL*N
 | 
						|
      Z = DIFR + NLVL*N*2
 | 
						|
      C = Z + NLVL*N
 | 
						|
      S = C + N
 | 
						|
      POLES = S + N
 | 
						|
      GIVNUM = POLES + 2*NLVL*N
 | 
						|
      BX = GIVNUM + 2*NLVL*N
 | 
						|
      NWORK = BX + N*NRHS
 | 
						|
*
 | 
						|
      SIZEI = 1 + N
 | 
						|
      K = SIZEI + N
 | 
						|
      GIVPTR = K + N
 | 
						|
      PERM = GIVPTR + N
 | 
						|
      GIVCOL = PERM + NLVL*N
 | 
						|
      IWK = GIVCOL + NLVL*N*2
 | 
						|
*
 | 
						|
      ST = 1
 | 
						|
      SQRE = 0
 | 
						|
      ICMPQ1 = 1
 | 
						|
      ICMPQ2 = 0
 | 
						|
      NSUB = 0
 | 
						|
*
 | 
						|
      DO 50 I = 1, N
 | 
						|
         IF( ABS( D( I ) ).LT.EPS ) THEN
 | 
						|
            D( I ) = SIGN( EPS, D( I ) )
 | 
						|
         END IF
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      DO 60 I = 1, NM1
 | 
						|
         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
 | 
						|
            NSUB = NSUB + 1
 | 
						|
            IWORK( NSUB ) = ST
 | 
						|
*
 | 
						|
*           Subproblem found. First determine its size and then
 | 
						|
*           apply divide and conquer on it.
 | 
						|
*
 | 
						|
            IF( I.LT.NM1 ) THEN
 | 
						|
*
 | 
						|
*              A subproblem with E(I) small for I < NM1.
 | 
						|
*
 | 
						|
               NSIZE = I - ST + 1
 | 
						|
               IWORK( SIZEI+NSUB-1 ) = NSIZE
 | 
						|
            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
 | 
						|
*
 | 
						|
*              A subproblem with E(NM1) not too small but I = NM1.
 | 
						|
*
 | 
						|
               NSIZE = N - ST + 1
 | 
						|
               IWORK( SIZEI+NSUB-1 ) = NSIZE
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              A subproblem with E(NM1) small. This implies an
 | 
						|
*              1-by-1 subproblem at D(N), which is not solved
 | 
						|
*              explicitly.
 | 
						|
*
 | 
						|
               NSIZE = I - ST + 1
 | 
						|
               IWORK( SIZEI+NSUB-1 ) = NSIZE
 | 
						|
               NSUB = NSUB + 1
 | 
						|
               IWORK( NSUB ) = N
 | 
						|
               IWORK( SIZEI+NSUB-1 ) = 1
 | 
						|
               CALL SCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
 | 
						|
            END IF
 | 
						|
            ST1 = ST - 1
 | 
						|
            IF( NSIZE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              This is a 1-by-1 subproblem and is not solved
 | 
						|
*              explicitly.
 | 
						|
*
 | 
						|
               CALL SCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
 | 
						|
            ELSE IF( NSIZE.LE.SMLSIZ ) THEN
 | 
						|
*
 | 
						|
*              This is a small subproblem and is solved by SLASDQ.
 | 
						|
*
 | 
						|
               CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
 | 
						|
     $                      WORK( VT+ST1 ), N )
 | 
						|
               CALL SLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
 | 
						|
     $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
 | 
						|
     $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
               CALL SLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
 | 
						|
     $                      WORK( BX+ST1 ), N )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              A large problem. Solve it using divide and conquer.
 | 
						|
*
 | 
						|
               CALL SLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
 | 
						|
     $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
 | 
						|
     $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
 | 
						|
     $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
 | 
						|
     $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
 | 
						|
     $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
 | 
						|
     $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
 | 
						|
     $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
 | 
						|
     $                      INFO )
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
               BXST = BX + ST1
 | 
						|
               CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
 | 
						|
     $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
 | 
						|
     $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
 | 
						|
     $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
 | 
						|
     $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
 | 
						|
     $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
 | 
						|
     $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
 | 
						|
     $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
 | 
						|
     $                      IWORK( IWK ), INFO )
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            ST = I + 1
 | 
						|
         END IF
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
*     Apply the singular values and treat the tiny ones as zero.
 | 
						|
*
 | 
						|
      TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
 | 
						|
*
 | 
						|
      DO 70 I = 1, N
 | 
						|
*
 | 
						|
*        Some of the elements in D can be negative because 1-by-1
 | 
						|
*        subproblems were not solved explicitly.
 | 
						|
*
 | 
						|
         IF( ABS( D( I ) ).LE.TOL ) THEN
 | 
						|
            CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
 | 
						|
         ELSE
 | 
						|
            RANK = RANK + 1
 | 
						|
            CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
 | 
						|
     $                   WORK( BX+I-1 ), N, INFO )
 | 
						|
         END IF
 | 
						|
         D( I ) = ABS( D( I ) )
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
*     Now apply back the right singular vectors.
 | 
						|
*
 | 
						|
      ICMPQ2 = 1
 | 
						|
      DO 80 I = 1, NSUB
 | 
						|
         ST = IWORK( I )
 | 
						|
         ST1 = ST - 1
 | 
						|
         NSIZE = IWORK( SIZEI+I-1 )
 | 
						|
         BXST = BX + ST1
 | 
						|
         IF( NSIZE.EQ.1 ) THEN
 | 
						|
            CALL SCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
 | 
						|
         ELSE IF( NSIZE.LE.SMLSIZ ) THEN
 | 
						|
            CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
 | 
						|
     $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
 | 
						|
     $                  B( ST, 1 ), LDB )
 | 
						|
         ELSE
 | 
						|
            CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
 | 
						|
     $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
 | 
						|
     $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
 | 
						|
     $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
 | 
						|
     $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
 | 
						|
     $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
 | 
						|
     $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
 | 
						|
     $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
 | 
						|
     $                   IWORK( IWK ), INFO )
 | 
						|
            IF( INFO.NE.0 ) THEN
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
*     Unscale and sort the singular values.
 | 
						|
*
 | 
						|
      CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | 
						|
      CALL SLASRT( 'D', N, D, INFO )
 | 
						|
      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLALSD
 | 
						|
*
 | 
						|
      END
 |