517 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGBTRF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGBTRF + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbtrf.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbtrf.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbtrf.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, KL, KU, LDAB, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               AB( LDAB, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGBTRF computes an LU factorization of a real m-by-n band matrix A
 | 
						|
*> using partial pivoting with row interchanges.
 | 
						|
*>
 | 
						|
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is REAL array, dimension (LDAB,N)
 | 
						|
*>          On entry, the matrix A in band storage, in rows KL+1 to
 | 
						|
*>          2*KL+KU+1; rows 1 to KL of the array need not be set.
 | 
						|
*>          The j-th column of A is stored in the j-th column of the
 | 
						|
*>          array AB as follows:
 | 
						|
*>          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
 | 
						|
*>
 | 
						|
*>          On exit, details of the factorization: U is stored as an
 | 
						|
*>          upper triangular band matrix with KL+KU superdiagonals in
 | 
						|
*>          rows 1 to KL+KU+1, and the multipliers used during the
 | 
						|
*>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
 | 
						|
*>          See below for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (min(M,N))
 | 
						|
*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | 
						|
*>          matrix was interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
 | 
						|
*>               has been completed, but the factor U is exactly
 | 
						|
*>               singular, and division by zero will occur if it is used
 | 
						|
*>               to solve a system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup realGBcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The band storage scheme is illustrated by the following example, when
 | 
						|
*>  M = N = 6, KL = 2, KU = 1:
 | 
						|
*>
 | 
						|
*>  On entry:                       On exit:
 | 
						|
*>
 | 
						|
*>      *    *    *    +    +    +       *    *    *   u14  u25  u36
 | 
						|
*>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
 | 
						|
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | 
						|
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | 
						|
*>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
 | 
						|
*>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
 | 
						|
*>
 | 
						|
*>  Array elements marked * are not used by the routine; elements marked
 | 
						|
*>  + need not be set on entry, but are required by the routine to store
 | 
						|
*>  elements of U because of fill-in resulting from the row interchanges.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, KL, KU, LDAB, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               AB( LDAB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      INTEGER            NBMAX, LDWORK
 | 
						|
      PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
 | 
						|
     $                   JU, K2, KM, KV, NB, NW
 | 
						|
      REAL               TEMP
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               WORK13( LDWORK, NBMAX ),
 | 
						|
     $                   WORK31( LDWORK, NBMAX )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV, ISAMAX
 | 
						|
      EXTERNAL           ILAENV, ISAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SGBTF2, SGEMM, SGER, SLASWP, SSCAL,
 | 
						|
     $                   SSWAP, STRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     KV is the number of superdiagonals in the factor U, allowing for
 | 
						|
*     fill-in
 | 
						|
*
 | 
						|
      KV = KU + KL
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KL.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( KU.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDAB.LT.KL+KV+1 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGBTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the block size for this environment
 | 
						|
*
 | 
						|
      NB = ILAENV( 1, 'SGBTRF', ' ', M, N, KL, KU )
 | 
						|
*
 | 
						|
*     The block size must not exceed the limit set by the size of the
 | 
						|
*     local arrays WORK13 and WORK31.
 | 
						|
*
 | 
						|
      NB = MIN( NB, NBMAX )
 | 
						|
*
 | 
						|
      IF( NB.LE.1 .OR. NB.GT.KL ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code
 | 
						|
*
 | 
						|
         CALL SGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code
 | 
						|
*
 | 
						|
*        Zero the superdiagonal elements of the work array WORK13
 | 
						|
*
 | 
						|
         DO 20 J = 1, NB
 | 
						|
            DO 10 I = 1, J - 1
 | 
						|
               WORK13( I, J ) = ZERO
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Zero the subdiagonal elements of the work array WORK31
 | 
						|
*
 | 
						|
         DO 40 J = 1, NB
 | 
						|
            DO 30 I = J + 1, NB
 | 
						|
               WORK31( I, J ) = ZERO
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
*        Gaussian elimination with partial pivoting
 | 
						|
*
 | 
						|
*        Set fill-in elements in columns KU+2 to KV to zero
 | 
						|
*
 | 
						|
         DO 60 J = KU + 2, MIN( KV, N )
 | 
						|
            DO 50 I = KV - J + 2, KL
 | 
						|
               AB( I, J ) = ZERO
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        JU is the index of the last column affected by the current
 | 
						|
*        stage of the factorization
 | 
						|
*
 | 
						|
         JU = 1
 | 
						|
*
 | 
						|
         DO 180 J = 1, MIN( M, N ), NB
 | 
						|
            JB = MIN( NB, MIN( M, N )-J+1 )
 | 
						|
*
 | 
						|
*           The active part of the matrix is partitioned
 | 
						|
*
 | 
						|
*              A11   A12   A13
 | 
						|
*              A21   A22   A23
 | 
						|
*              A31   A32   A33
 | 
						|
*
 | 
						|
*           Here A11, A21 and A31 denote the current block of JB columns
 | 
						|
*           which is about to be factorized. The number of rows in the
 | 
						|
*           partitioning are JB, I2, I3 respectively, and the numbers
 | 
						|
*           of columns are JB, J2, J3. The superdiagonal elements of A13
 | 
						|
*           and the subdiagonal elements of A31 lie outside the band.
 | 
						|
*
 | 
						|
            I2 = MIN( KL-JB, M-J-JB+1 )
 | 
						|
            I3 = MIN( JB, M-J-KL+1 )
 | 
						|
*
 | 
						|
*           J2 and J3 are computed after JU has been updated.
 | 
						|
*
 | 
						|
*           Factorize the current block of JB columns
 | 
						|
*
 | 
						|
            DO 80 JJ = J, J + JB - 1
 | 
						|
*
 | 
						|
*              Set fill-in elements in column JJ+KV to zero
 | 
						|
*
 | 
						|
               IF( JJ+KV.LE.N ) THEN
 | 
						|
                  DO 70 I = 1, KL
 | 
						|
                     AB( I, JJ+KV ) = ZERO
 | 
						|
   70             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Find pivot and test for singularity. KM is the number of
 | 
						|
*              subdiagonal elements in the current column.
 | 
						|
*
 | 
						|
               KM = MIN( KL, M-JJ )
 | 
						|
               JP = ISAMAX( KM+1, AB( KV+1, JJ ), 1 )
 | 
						|
               IPIV( JJ ) = JP + JJ - J
 | 
						|
               IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
 | 
						|
                  JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
 | 
						|
                  IF( JP.NE.1 ) THEN
 | 
						|
*
 | 
						|
*                    Apply interchange to columns J to J+JB-1
 | 
						|
*
 | 
						|
                     IF( JP+JJ-1.LT.J+KL ) THEN
 | 
						|
*
 | 
						|
                        CALL SSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
 | 
						|
     $                              AB( KV+JP+JJ-J, J ), LDAB-1 )
 | 
						|
                     ELSE
 | 
						|
*
 | 
						|
*                       The interchange affects columns J to JJ-1 of A31
 | 
						|
*                       which are stored in the work array WORK31
 | 
						|
*
 | 
						|
                        CALL SSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
 | 
						|
     $                              WORK31( JP+JJ-J-KL, 1 ), LDWORK )
 | 
						|
                        CALL SSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
 | 
						|
     $                              AB( KV+JP, JJ ), LDAB-1 )
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Compute multipliers
 | 
						|
*
 | 
						|
                  CALL SSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
 | 
						|
     $                        1 )
 | 
						|
*
 | 
						|
*                 Update trailing submatrix within the band and within
 | 
						|
*                 the current block. JM is the index of the last column
 | 
						|
*                 which needs to be updated.
 | 
						|
*
 | 
						|
                  JM = MIN( JU, J+JB-1 )
 | 
						|
                  IF( JM.GT.JJ )
 | 
						|
     $               CALL SGER( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
 | 
						|
     $                          AB( KV, JJ+1 ), LDAB-1,
 | 
						|
     $                          AB( KV+1, JJ+1 ), LDAB-1 )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 If pivot is zero, set INFO to the index of the pivot
 | 
						|
*                 unless a zero pivot has already been found.
 | 
						|
*
 | 
						|
                  IF( INFO.EQ.0 )
 | 
						|
     $               INFO = JJ
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Copy current column of A31 into the work array WORK31
 | 
						|
*
 | 
						|
               NW = MIN( JJ-J+1, I3 )
 | 
						|
               IF( NW.GT.0 )
 | 
						|
     $            CALL SCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
 | 
						|
     $                        WORK31( 1, JJ-J+1 ), 1 )
 | 
						|
   80       CONTINUE
 | 
						|
            IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*              Apply the row interchanges to the other blocks.
 | 
						|
*
 | 
						|
               J2 = MIN( JU-J+1, KV ) - JB
 | 
						|
               J3 = MAX( 0, JU-J-KV+1 )
 | 
						|
*
 | 
						|
*              Use SLASWP to apply the row interchanges to A12, A22, and
 | 
						|
*              A32.
 | 
						|
*
 | 
						|
               CALL SLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-1, 1, JB,
 | 
						|
     $                      IPIV( J ), 1 )
 | 
						|
*
 | 
						|
*              Adjust the pivot indices.
 | 
						|
*
 | 
						|
               DO 90 I = J, J + JB - 1
 | 
						|
                  IPIV( I ) = IPIV( I ) + J - 1
 | 
						|
   90          CONTINUE
 | 
						|
*
 | 
						|
*              Apply the row interchanges to A13, A23, and A33
 | 
						|
*              columnwise.
 | 
						|
*
 | 
						|
               K2 = J - 1 + JB + J2
 | 
						|
               DO 110 I = 1, J3
 | 
						|
                  JJ = K2 + I
 | 
						|
                  DO 100 II = J + I - 1, J + JB - 1
 | 
						|
                     IP = IPIV( II )
 | 
						|
                     IF( IP.NE.II ) THEN
 | 
						|
                        TEMP = AB( KV+1+II-JJ, JJ )
 | 
						|
                        AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ )
 | 
						|
                        AB( KV+1+IP-JJ, JJ ) = TEMP
 | 
						|
                     END IF
 | 
						|
  100             CONTINUE
 | 
						|
  110          CONTINUE
 | 
						|
*
 | 
						|
*              Update the relevant part of the trailing submatrix
 | 
						|
*
 | 
						|
               IF( J2.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                 Update A12
 | 
						|
*
 | 
						|
                  CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit',
 | 
						|
     $                        JB, J2, ONE, AB( KV+1, J ), LDAB-1,
 | 
						|
     $                        AB( KV+1-JB, J+JB ), LDAB-1 )
 | 
						|
*
 | 
						|
                  IF( I2.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Update A22
 | 
						|
*
 | 
						|
                     CALL SGEMM( 'No transpose', 'No transpose', I2, J2,
 | 
						|
     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
 | 
						|
     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
 | 
						|
     $                           AB( KV+1, J+JB ), LDAB-1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( I3.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Update A32
 | 
						|
*
 | 
						|
                     CALL SGEMM( 'No transpose', 'No transpose', I3, J2,
 | 
						|
     $                           JB, -ONE, WORK31, LDWORK,
 | 
						|
     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
 | 
						|
     $                           AB( KV+KL+1-JB, J+JB ), LDAB-1 )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( J3.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                 Copy the lower triangle of A13 into the work array
 | 
						|
*                 WORK13
 | 
						|
*
 | 
						|
                  DO 130 JJ = 1, J3
 | 
						|
                     DO 120 II = JJ, JB
 | 
						|
                        WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
 | 
						|
  120                CONTINUE
 | 
						|
  130             CONTINUE
 | 
						|
*
 | 
						|
*                 Update A13 in the work array
 | 
						|
*
 | 
						|
                  CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit',
 | 
						|
     $                        JB, J3, ONE, AB( KV+1, J ), LDAB-1,
 | 
						|
     $                        WORK13, LDWORK )
 | 
						|
*
 | 
						|
                  IF( I2.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Update A23
 | 
						|
*
 | 
						|
                     CALL SGEMM( 'No transpose', 'No transpose', I2, J3,
 | 
						|
     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
 | 
						|
     $                           WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
 | 
						|
     $                           LDAB-1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( I3.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Update A33
 | 
						|
*
 | 
						|
                     CALL SGEMM( 'No transpose', 'No transpose', I3, J3,
 | 
						|
     $                           JB, -ONE, WORK31, LDWORK, WORK13,
 | 
						|
     $                           LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Copy the lower triangle of A13 back into place
 | 
						|
*
 | 
						|
                  DO 150 JJ = 1, J3
 | 
						|
                     DO 140 II = JJ, JB
 | 
						|
                        AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
 | 
						|
  140                CONTINUE
 | 
						|
  150             CONTINUE
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Adjust the pivot indices.
 | 
						|
*
 | 
						|
               DO 160 I = J, J + JB - 1
 | 
						|
                  IPIV( I ) = IPIV( I ) + J - 1
 | 
						|
  160          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Partially undo the interchanges in the current block to
 | 
						|
*           restore the upper triangular form of A31 and copy the upper
 | 
						|
*           triangle of A31 back into place
 | 
						|
*
 | 
						|
            DO 170 JJ = J + JB - 1, J, -1
 | 
						|
               JP = IPIV( JJ ) - JJ + 1
 | 
						|
               IF( JP.NE.1 ) THEN
 | 
						|
*
 | 
						|
*                 Apply interchange to columns J to JJ-1
 | 
						|
*
 | 
						|
                  IF( JP+JJ-1.LT.J+KL ) THEN
 | 
						|
*
 | 
						|
*                    The interchange does not affect A31
 | 
						|
*
 | 
						|
                     CALL SSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
 | 
						|
     $                           AB( KV+JP+JJ-J, J ), LDAB-1 )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    The interchange does affect A31
 | 
						|
*
 | 
						|
                     CALL SSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
 | 
						|
     $                           WORK31( JP+JJ-J-KL, 1 ), LDWORK )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Copy the current column of A31 back into place
 | 
						|
*
 | 
						|
               NW = MIN( I3, JJ-J+1 )
 | 
						|
               IF( NW.GT.0 )
 | 
						|
     $            CALL SCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
 | 
						|
     $                        AB( KV+KL+1-JJ+J, JJ ), 1 )
 | 
						|
  170       CONTINUE
 | 
						|
  180    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGBTRF
 | 
						|
*
 | 
						|
      END
 |