276 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLACON estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLACON + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlacon.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlacon.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlacon.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLACON( N, V, X, ISGN, EST, KASE )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            KASE, N
 | 
						|
*       DOUBLE PRECISION   EST
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISGN( * )
 | 
						|
*       DOUBLE PRECISION   V( * ), X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLACON estimates the 1-norm of a square, real matrix A.
 | 
						|
*> Reverse communication is used for evaluating matrix-vector products.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         The order of the matrix.  N >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>         On the final return, V = A*W,  where  EST = norm(V)/norm(W)
 | 
						|
*>         (W is not returned).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>         On an intermediate return, X should be overwritten by
 | 
						|
*>               A * X,   if KASE=1,
 | 
						|
*>               A**T * X,  if KASE=2,
 | 
						|
*>         and DLACON must be re-called with all the other parameters
 | 
						|
*>         unchanged.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ISGN
 | 
						|
*> \verbatim
 | 
						|
*>          ISGN is INTEGER array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] EST
 | 
						|
*> \verbatim
 | 
						|
*>          EST is DOUBLE PRECISION
 | 
						|
*>         On entry with KASE = 1 or 2 and JUMP = 3, EST should be
 | 
						|
*>         unchanged from the previous call to DLACON.
 | 
						|
*>         On exit, EST is an estimate (a lower bound) for norm(A).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] KASE
 | 
						|
*> \verbatim
 | 
						|
*>          KASE is INTEGER
 | 
						|
*>         On the initial call to DLACON, KASE should be 0.
 | 
						|
*>         On an intermediate return, KASE will be 1 or 2, indicating
 | 
						|
*>         whether X should be overwritten by A * X  or A**T * X.
 | 
						|
*>         On the final return from DLACON, KASE will again be 0.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>  Nick Higham, University of Manchester. \n
 | 
						|
*>  Originally named SONEST, dated March 16, 1988.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>  N.J. Higham, "FORTRAN codes for estimating the one-norm of
 | 
						|
*>  a real or complex matrix, with applications to condition estimation",
 | 
						|
*>  ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLACON( N, V, X, ISGN, EST, KASE )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            KASE, N
 | 
						|
      DOUBLE PRECISION   EST
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISGN( * )
 | 
						|
      DOUBLE PRECISION   V( * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            ITMAX
 | 
						|
      PARAMETER          ( ITMAX = 5 )
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, ITER, J, JLAST, JUMP
 | 
						|
      DOUBLE PRECISION   ALTSGN, ESTOLD, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DASUM
 | 
						|
      EXTERNAL           IDAMAX, DASUM
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, NINT, SIGN
 | 
						|
*     ..
 | 
						|
*     .. Save statement ..
 | 
						|
      SAVE
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( KASE.EQ.0 ) THEN
 | 
						|
         DO 10 I = 1, N
 | 
						|
            X( I ) = ONE / DBLE( N )
 | 
						|
   10    CONTINUE
 | 
						|
         KASE = 1
 | 
						|
         JUMP = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      GO TO ( 20, 40, 70, 110, 140 )JUMP
 | 
						|
*
 | 
						|
*     ................ ENTRY   (JUMP = 1)
 | 
						|
*     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X.
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         V( 1 ) = X( 1 )
 | 
						|
         EST = ABS( V( 1 ) )
 | 
						|
*        ... QUIT
 | 
						|
         GO TO 150
 | 
						|
      END IF
 | 
						|
      EST = DASUM( N, X, 1 )
 | 
						|
*
 | 
						|
      DO 30 I = 1, N
 | 
						|
         X( I ) = SIGN( ONE, X( I ) )
 | 
						|
         ISGN( I ) = NINT( X( I ) )
 | 
						|
   30 CONTINUE
 | 
						|
      KASE = 2
 | 
						|
      JUMP = 2
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     ................ ENTRY   (JUMP = 2)
 | 
						|
*     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      J = IDAMAX( N, X, 1 )
 | 
						|
      ITER = 2
 | 
						|
*
 | 
						|
*     MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      DO 60 I = 1, N
 | 
						|
         X( I ) = ZERO
 | 
						|
   60 CONTINUE
 | 
						|
      X( J ) = ONE
 | 
						|
      KASE = 1
 | 
						|
      JUMP = 3
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     ................ ENTRY   (JUMP = 3)
 | 
						|
*     X HAS BEEN OVERWRITTEN BY A*X.
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
      CALL DCOPY( N, X, 1, V, 1 )
 | 
						|
      ESTOLD = EST
 | 
						|
      EST = DASUM( N, V, 1 )
 | 
						|
      DO 80 I = 1, N
 | 
						|
         IF( NINT( SIGN( ONE, X( I ) ) ).NE.ISGN( I ) )
 | 
						|
     $      GO TO 90
 | 
						|
   80 CONTINUE
 | 
						|
*     REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
 | 
						|
      GO TO 120
 | 
						|
*
 | 
						|
   90 CONTINUE
 | 
						|
*     TEST FOR CYCLING.
 | 
						|
      IF( EST.LE.ESTOLD )
 | 
						|
     $   GO TO 120
 | 
						|
*
 | 
						|
      DO 100 I = 1, N
 | 
						|
         X( I ) = SIGN( ONE, X( I ) )
 | 
						|
         ISGN( I ) = NINT( X( I ) )
 | 
						|
  100 CONTINUE
 | 
						|
      KASE = 2
 | 
						|
      JUMP = 4
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     ................ ENTRY   (JUMP = 4)
 | 
						|
*     X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
 | 
						|
*
 | 
						|
  110 CONTINUE
 | 
						|
      JLAST = J
 | 
						|
      J = IDAMAX( N, X, 1 )
 | 
						|
      IF( ( X( JLAST ).NE.ABS( X( J ) ) ) .AND. ( ITER.LT.ITMAX ) ) THEN
 | 
						|
         ITER = ITER + 1
 | 
						|
         GO TO 50
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ITERATION COMPLETE.  FINAL STAGE.
 | 
						|
*
 | 
						|
  120 CONTINUE
 | 
						|
      ALTSGN = ONE
 | 
						|
      DO 130 I = 1, N
 | 
						|
         X( I ) = ALTSGN*( ONE+DBLE( I-1 ) / DBLE( N-1 ) )
 | 
						|
         ALTSGN = -ALTSGN
 | 
						|
  130 CONTINUE
 | 
						|
      KASE = 1
 | 
						|
      JUMP = 5
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     ................ ENTRY   (JUMP = 5)
 | 
						|
*     X HAS BEEN OVERWRITTEN BY A*X.
 | 
						|
*
 | 
						|
  140 CONTINUE
 | 
						|
      TEMP = TWO*( DASUM( N, X, 1 ) / DBLE( 3*N ) )
 | 
						|
      IF( TEMP.GT.EST ) THEN
 | 
						|
         CALL DCOPY( N, X, 1, V, 1 )
 | 
						|
         EST = TEMP
 | 
						|
      END IF
 | 
						|
*
 | 
						|
  150 CONTINUE
 | 
						|
      KASE = 0
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLACON
 | 
						|
*
 | 
						|
      END
 |