247 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPOTRF2
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       RECURSIVE SUBROUTINE CPOTRF2( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPOTRF2 computes the Cholesky factorization of a Hermitian
 | 
						|
*> positive definite matrix A using the recursive algorithm.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = U**H * U,  if UPLO = 'U', or
 | 
						|
*>    A = L  * L**H,  if UPLO = 'L',
 | 
						|
*> where U is an upper triangular matrix and L is lower triangular.
 | 
						|
*>
 | 
						|
*> This is the recursive version of the algorithm. It divides
 | 
						|
*> the matrix into four submatrices:
 | 
						|
*>
 | 
						|
*>        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
 | 
						|
*>    A = [ -----|----- ]  with n1 = n/2
 | 
						|
*>        [  A21 | A22  ]       n2 = n-n1
 | 
						|
*>
 | 
						|
*> The subroutine calls itself to factor A11. Update and scale A21
 | 
						|
*> or A12, update A22 then calls itself to factor A22.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 | 
						|
*>          N-by-N upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading N-by-N lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | 
						|
*>          factorization A = U**H*U or A = L*L**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the leading minor of order i is not
 | 
						|
*>                positive definite, and the factorization could not be
 | 
						|
*>                completed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup complexPOcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      RECURSIVE SUBROUTINE CPOTRF2( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = (1.0E+0, 0.0E+0) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            N1, N2, IINFO
 | 
						|
      REAL               AJJ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, SISNAN
 | 
						|
      EXTERNAL           LSAME, SISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CHERK, CTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPOTRF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     N=1 case
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        Test for non-positive-definiteness
 | 
						|
*
 | 
						|
         AJJ = REAL( A( 1, 1 ) )
 | 
						|
         IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
 | 
						|
            INFO = 1
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Factor
 | 
						|
*
 | 
						|
         A( 1, 1 ) = SQRT( AJJ )
 | 
						|
*
 | 
						|
*     Use recursive code
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
         N1 = N/2
 | 
						|
         N2 = N-N1
 | 
						|
*
 | 
						|
*        Factor A11
 | 
						|
*
 | 
						|
         CALL CPOTRF2( UPLO, N1, A( 1, 1 ), LDA, IINFO )
 | 
						|
         IF ( IINFO.NE.0 ) THEN
 | 
						|
            INFO = IINFO
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization A = U**H*U
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Update and scale A12
 | 
						|
*
 | 
						|
            CALL CTRSM( 'L', 'U', 'C', 'N', N1, N2, CONE,
 | 
						|
     $                  A( 1, 1 ), LDA, A( 1, N1+1 ), LDA )
 | 
						|
*
 | 
						|
*           Update and factor A22
 | 
						|
*
 | 
						|
            CALL CHERK( UPLO, 'C', N2, N1, -ONE, A( 1, N1+1 ), LDA,
 | 
						|
     $                  ONE, A( N1+1, N1+1 ), LDA )
 | 
						|
*
 | 
						|
            CALL CPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
 | 
						|
*
 | 
						|
            IF ( IINFO.NE.0 ) THEN
 | 
						|
               INFO = IINFO + N1
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*        Compute the Cholesky factorization A = L*L**H
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Update and scale A21
 | 
						|
*
 | 
						|
            CALL CTRSM( 'R', 'L', 'C', 'N', N2, N1, CONE,
 | 
						|
     $                  A( 1, 1 ), LDA, A( N1+1, 1 ), LDA )
 | 
						|
*
 | 
						|
*           Update and factor A22
 | 
						|
*
 | 
						|
            CALL CHERK( UPLO, 'N', N2, N1, -ONE, A( N1+1, 1 ), LDA,
 | 
						|
     $                  ONE, A( N1+1, N1+1 ), LDA )
 | 
						|
*
 | 
						|
            CALL CPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
 | 
						|
*
 | 
						|
            IF ( IINFO.NE.0 ) THEN
 | 
						|
               INFO = IINFO + N1
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPOTRF2
 | 
						|
*
 | 
						|
      END
 |