246 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DDISNA
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DDISNA + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ddisna.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ddisna.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ddisna.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOB
 | 
						|
*       INTEGER            INFO, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), SEP( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DDISNA computes the reciprocal condition numbers for the eigenvectors
 | 
						|
*> of a real symmetric or complex Hermitian matrix or for the left or
 | 
						|
*> right singular vectors of a general m-by-n matrix. The reciprocal
 | 
						|
*> condition number is the 'gap' between the corresponding eigenvalue or
 | 
						|
*> singular value and the nearest other one.
 | 
						|
*>
 | 
						|
*> The bound on the error, measured by angle in radians, in the I-th
 | 
						|
*> computed vector is given by
 | 
						|
*>
 | 
						|
*>        DLAMCH( 'E' ) * ( ANORM / SEP( I ) )
 | 
						|
*>
 | 
						|
*> where ANORM = 2-norm(A) = max( abs( D(j) ) ).  SEP(I) is not allowed
 | 
						|
*> to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of
 | 
						|
*> the error bound.
 | 
						|
*>
 | 
						|
*> DDISNA may also be used to compute error bounds for eigenvectors of
 | 
						|
*> the generalized symmetric definite eigenproblem.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>          Specifies for which problem the reciprocal condition numbers
 | 
						|
*>          should be computed:
 | 
						|
*>          = 'E':  the eigenvectors of a symmetric/Hermitian matrix;
 | 
						|
*>          = 'L':  the left singular vectors of a general matrix;
 | 
						|
*>          = 'R':  the right singular vectors of a general matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          If JOB = 'L' or 'R', the number of columns of the matrix,
 | 
						|
*>          in which case N >= 0. Ignored if JOB = 'E'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (M) if JOB = 'E'
 | 
						|
*>                              dimension (min(M,N)) if JOB = 'L' or 'R'
 | 
						|
*>          The eigenvalues (if JOB = 'E') or singular values (if JOB =
 | 
						|
*>          'L' or 'R') of the matrix, in either increasing or decreasing
 | 
						|
*>          order. If singular values, they must be non-negative.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SEP
 | 
						|
*> \verbatim
 | 
						|
*>          SEP is DOUBLE PRECISION array, dimension (M) if JOB = 'E'
 | 
						|
*>                               dimension (min(M,N)) if JOB = 'L' or 'R'
 | 
						|
*>          The reciprocal condition numbers of the vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOB
 | 
						|
      INTEGER            INFO, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), SEP( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            DECR, EIGEN, INCR, LEFT, RIGHT, SING
 | 
						|
      INTEGER            I, K
 | 
						|
      DOUBLE PRECISION   ANORM, EPS, NEWGAP, OLDGAP, SAFMIN, THRESH
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           LSAME, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      EIGEN = LSAME( JOB, 'E' )
 | 
						|
      LEFT = LSAME( JOB, 'L' )
 | 
						|
      RIGHT = LSAME( JOB, 'R' )
 | 
						|
      SING = LEFT .OR. RIGHT
 | 
						|
      IF( EIGEN ) THEN
 | 
						|
         K = M
 | 
						|
      ELSE IF( SING ) THEN
 | 
						|
         K = MIN( M, N )
 | 
						|
      END IF
 | 
						|
      IF( .NOT.EIGEN .AND. .NOT.SING ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( K.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE
 | 
						|
         INCR = .TRUE.
 | 
						|
         DECR = .TRUE.
 | 
						|
         DO 10 I = 1, K - 1
 | 
						|
            IF( INCR )
 | 
						|
     $         INCR = INCR .AND. D( I ).LE.D( I+1 )
 | 
						|
            IF( DECR )
 | 
						|
     $         DECR = DECR .AND. D( I ).GE.D( I+1 )
 | 
						|
   10    CONTINUE
 | 
						|
         IF( SING .AND. K.GT.0 ) THEN
 | 
						|
            IF( INCR )
 | 
						|
     $         INCR = INCR .AND. ZERO.LE.D( 1 )
 | 
						|
            IF( DECR )
 | 
						|
     $         DECR = DECR .AND. D( K ).GE.ZERO
 | 
						|
         END IF
 | 
						|
         IF( .NOT.( INCR .OR. DECR ) )
 | 
						|
     $      INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DDISNA', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( K.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Compute reciprocal condition numbers
 | 
						|
*
 | 
						|
      IF( K.EQ.1 ) THEN
 | 
						|
         SEP( 1 ) = DLAMCH( 'O' )
 | 
						|
      ELSE
 | 
						|
         OLDGAP = ABS( D( 2 )-D( 1 ) )
 | 
						|
         SEP( 1 ) = OLDGAP
 | 
						|
         DO 20 I = 2, K - 1
 | 
						|
            NEWGAP = ABS( D( I+1 )-D( I ) )
 | 
						|
            SEP( I ) = MIN( OLDGAP, NEWGAP )
 | 
						|
            OLDGAP = NEWGAP
 | 
						|
   20    CONTINUE
 | 
						|
         SEP( K ) = OLDGAP
 | 
						|
      END IF
 | 
						|
      IF( SING ) THEN
 | 
						|
         IF( ( LEFT .AND. M.GT.N ) .OR. ( RIGHT .AND. M.LT.N ) ) THEN
 | 
						|
            IF( INCR )
 | 
						|
     $         SEP( 1 ) = MIN( SEP( 1 ), D( 1 ) )
 | 
						|
            IF( DECR )
 | 
						|
     $         SEP( K ) = MIN( SEP( K ), D( K ) )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Ensure that reciprocal condition numbers are not less than
 | 
						|
*     threshold, in order to limit the size of the error bound
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'E' )
 | 
						|
      SAFMIN = DLAMCH( 'S' )
 | 
						|
      ANORM = MAX( ABS( D( 1 ) ), ABS( D( K ) ) )
 | 
						|
      IF( ANORM.EQ.ZERO ) THEN
 | 
						|
         THRESH = EPS
 | 
						|
      ELSE
 | 
						|
         THRESH = MAX( EPS*ANORM, SAFMIN )
 | 
						|
      END IF
 | 
						|
      DO 30 I = 1, K
 | 
						|
         SEP( I ) = MAX( SEP( I ), THRESH )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DDISNA
 | 
						|
*
 | 
						|
      END
 |