246 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPTTS2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptts2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptts2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptts2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IUPLO, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * )
 | 
						|
*       COMPLEX            B( LDB, * ), E( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPTTS2 solves a tridiagonal system of the form
 | 
						|
*>    A * X = B
 | 
						|
*> using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF.
 | 
						|
*> D is a diagonal matrix specified in the vector D, U (or L) is a unit
 | 
						|
*> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
 | 
						|
*> the vector E, and X and B are N by NRHS matrices.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] IUPLO
 | 
						|
*> \verbatim
 | 
						|
*>          IUPLO is INTEGER
 | 
						|
*>          Specifies the form of the factorization and whether the
 | 
						|
*>          vector E is the superdiagonal of the upper bidiagonal factor
 | 
						|
*>          U or the subdiagonal of the lower bidiagonal factor L.
 | 
						|
*>          = 1:  A = U**H *D*U, E is the superdiagonal of U
 | 
						|
*>          = 0:  A = L*D*L**H, E is the subdiagonal of L
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the tridiagonal matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the diagonal matrix D from the
 | 
						|
*>          factorization A = U**H *D*U or A = L*D*L**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX array, dimension (N-1)
 | 
						|
*>          If IUPLO = 1, the (n-1) superdiagonal elements of the unit
 | 
						|
*>          bidiagonal factor U from the factorization A = U**H*D*U.
 | 
						|
*>          If IUPLO = 0, the (n-1) subdiagonal elements of the unit
 | 
						|
*>          bidiagonal factor L from the factorization A = L*D*L**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side vectors B for the system of
 | 
						|
*>          linear equations.
 | 
						|
*>          On exit, the solution vectors, X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup complexPTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IUPLO, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * )
 | 
						|
      COMPLEX            B( LDB, * ), E( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CSSCAL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.1 ) THEN
 | 
						|
         IF( N.EQ.1 )
 | 
						|
     $      CALL CSSCAL( NRHS, 1. / D( 1 ), B, LDB )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( IUPLO.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        Solve A * X = B using the factorization A = U**H *D*U,
 | 
						|
*        overwriting each right hand side vector with its solution.
 | 
						|
*
 | 
						|
         IF( NRHS.LE.2 ) THEN
 | 
						|
            J = 1
 | 
						|
    5       CONTINUE
 | 
						|
*
 | 
						|
*           Solve U**H * x = b.
 | 
						|
*
 | 
						|
            DO 10 I = 2, N
 | 
						|
               B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
*           Solve D * U * x = b.
 | 
						|
*
 | 
						|
            DO 20 I = 1, N
 | 
						|
               B( I, J ) = B( I, J ) / D( I )
 | 
						|
   20       CONTINUE
 | 
						|
            DO 30 I = N - 1, 1, -1
 | 
						|
               B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
 | 
						|
   30       CONTINUE
 | 
						|
            IF( J.LT.NRHS ) THEN
 | 
						|
               J = J + 1
 | 
						|
               GO TO 5
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            DO 60 J = 1, NRHS
 | 
						|
*
 | 
						|
*              Solve U**H * x = b.
 | 
						|
*
 | 
						|
               DO 40 I = 2, N
 | 
						|
                  B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
 | 
						|
   40          CONTINUE
 | 
						|
*
 | 
						|
*              Solve D * U * x = b.
 | 
						|
*
 | 
						|
               B( N, J ) = B( N, J ) / D( N )
 | 
						|
               DO 50 I = N - 1, 1, -1
 | 
						|
                  B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
 | 
						|
   50          CONTINUE
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Solve A * X = B using the factorization A = L*D*L**H,
 | 
						|
*        overwriting each right hand side vector with its solution.
 | 
						|
*
 | 
						|
         IF( NRHS.LE.2 ) THEN
 | 
						|
            J = 1
 | 
						|
   65       CONTINUE
 | 
						|
*
 | 
						|
*           Solve L * x = b.
 | 
						|
*
 | 
						|
            DO 70 I = 2, N
 | 
						|
               B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
 | 
						|
   70       CONTINUE
 | 
						|
*
 | 
						|
*           Solve D * L**H * x = b.
 | 
						|
*
 | 
						|
            DO 80 I = 1, N
 | 
						|
               B( I, J ) = B( I, J ) / D( I )
 | 
						|
   80       CONTINUE
 | 
						|
            DO 90 I = N - 1, 1, -1
 | 
						|
               B( I, J ) = B( I, J ) - B( I+1, J )*CONJG( E( I ) )
 | 
						|
   90       CONTINUE
 | 
						|
            IF( J.LT.NRHS ) THEN
 | 
						|
               J = J + 1
 | 
						|
               GO TO 65
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            DO 120 J = 1, NRHS
 | 
						|
*
 | 
						|
*              Solve L * x = b.
 | 
						|
*
 | 
						|
               DO 100 I = 2, N
 | 
						|
                  B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
 | 
						|
  100          CONTINUE
 | 
						|
*
 | 
						|
*              Solve D * L**H * x = b.
 | 
						|
*
 | 
						|
               B( N, J ) = B( N, J ) / D( N )
 | 
						|
               DO 110 I = N - 1, 1, -1
 | 
						|
                  B( I, J ) = B( I, J ) / D( I ) -
 | 
						|
     $                        B( I+1, J )*CONJG( E( I ) )
 | 
						|
  110          CONTINUE
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPTTS2
 | 
						|
*
 | 
						|
      END
 |