379 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE DTRSMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
 | |
|      $                   B, LDB )
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
 | |
|       INTEGER            M, N, LDA, LDB
 | |
|       DOUBLE PRECISION   ALPHA
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  DTRSM  solves one of the matrix equations
 | |
| *
 | |
| *     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
 | |
| *
 | |
| *  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 | |
| *  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
 | |
| *
 | |
| *     op( A ) = A   or   op( A ) = A'.
 | |
| *
 | |
| *  The matrix X is overwritten on B.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  SIDE   - CHARACTER*1.
 | |
| *           On entry, SIDE specifies whether op( A ) appears on the left
 | |
| *           or right of X as follows:
 | |
| *
 | |
| *              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
 | |
| *
 | |
| *              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the matrix A is an upper or
 | |
| *           lower triangular matrix as follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANSA - CHARACTER*1.
 | |
| *           On entry, TRANSA specifies the form of op( A ) to be used in
 | |
| *           the matrix multiplication as follows:
 | |
| *
 | |
| *              TRANSA = 'N' or 'n'   op( A ) = A.
 | |
| *
 | |
| *              TRANSA = 'T' or 't'   op( A ) = A'.
 | |
| *
 | |
| *              TRANSA = 'C' or 'c'   op( A ) = A'.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  DIAG   - CHARACTER*1.
 | |
| *           On entry, DIAG specifies whether or not A is unit triangular
 | |
| *           as follows:
 | |
| *
 | |
| *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *
 | |
| *              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *                                  triangular.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  M      - INTEGER.
 | |
| *           On entry, M specifies the number of rows of B. M must be at
 | |
| *           least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the number of columns of B.  N must be
 | |
| *           at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - DOUBLE PRECISION.
 | |
| *           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
 | |
| *           zero then  A is not referenced and  B need not be set before
 | |
| *           entry.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
 | |
| *           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
 | |
| *           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
 | |
| *           upper triangular part of the array  A must contain the upper
 | |
| *           triangular matrix  and the strictly lower triangular part of
 | |
| *           A is not referenced.
 | |
| *           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
 | |
| *           lower triangular part of the array  A must contain the lower
 | |
| *           triangular matrix  and the strictly upper triangular part of
 | |
| *           A is not referenced.
 | |
| *           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
 | |
| *           A  are not referenced either,  but are assumed to be  unity.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 | |
| *           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
 | |
| *           then LDA must be at least max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
 | |
| *           Before entry,  the leading  m by n part of the array  B must
 | |
| *           contain  the  right-hand  side  matrix  B,  and  on exit  is
 | |
| *           overwritten by the solution matrix  X.
 | |
| *
 | |
| *  LDB    - INTEGER.
 | |
| *           On entry, LDB specifies the first dimension of B as declared
 | |
| *           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | |
| *           max( 1, m ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 3 Blas routine.
 | |
| *
 | |
| *
 | |
| *  -- Written on 8-February-1989.
 | |
| *     Jack Dongarra, Argonne National Laboratory.
 | |
| *     Iain Duff, AERE Harwell.
 | |
| *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LSIDE, NOUNIT, UPPER
 | |
|       INTEGER            I, INFO, J, K, NROWA
 | |
|       DOUBLE PRECISION   TEMP
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE         , ZERO
 | |
|       PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       LSIDE  = LSAME( SIDE  , 'L' )
 | |
|       IF( LSIDE )THEN
 | |
|          NROWA = M
 | |
|       ELSE
 | |
|          NROWA = N
 | |
|       END IF
 | |
|       NOUNIT = LSAME( DIAG  , 'N' )
 | |
|       UPPER  = LSAME( UPLO  , 'U' )
 | |
| *
 | |
|       INFO   = 0
 | |
|       IF(      ( .NOT.LSIDE                ).AND.
 | |
|      $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( ( .NOT.UPPER                ).AND.
 | |
|      $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
 | |
|      $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
 | |
|      $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
 | |
|      $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( M  .LT.0               )THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( N  .LT.0               )THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
 | |
|          INFO = 9
 | |
|       ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
 | |
|          INFO = 11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'DTRSM ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF( ALPHA.EQ.ZERO )THEN
 | |
|          DO 20, J = 1, N
 | |
|             DO 10, I = 1, M
 | |
|                B( I, J ) = ZERO
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF( LSIDE )THEN
 | |
|          IF( LSAME( TRANSA, 'N' ) )THEN
 | |
| *
 | |
| *           Form  B := alpha*inv( A )*B.
 | |
| *
 | |
|             IF( UPPER )THEN
 | |
|                DO 60, J = 1, N
 | |
|                   IF( ALPHA.NE.ONE )THEN
 | |
|                      DO 30, I = 1, M
 | |
|                         B( I, J ) = ALPHA*B( I, J )
 | |
|    30                CONTINUE
 | |
|                   END IF
 | |
|                   DO 50, K = M, 1, -1
 | |
|                      IF( B( K, J ).NE.ZERO )THEN
 | |
|                         IF( NOUNIT )
 | |
|      $                     B( K, J ) = B( K, J )/A( K, K )
 | |
|                         DO 40, I = 1, K - 1
 | |
|                            B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
 | |
|    40                   CONTINUE
 | |
|                      END IF
 | |
|    50             CONTINUE
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                DO 100, J = 1, N
 | |
|                   IF( ALPHA.NE.ONE )THEN
 | |
|                      DO 70, I = 1, M
 | |
|                         B( I, J ) = ALPHA*B( I, J )
 | |
|    70                CONTINUE
 | |
|                   END IF
 | |
|                   DO 90 K = 1, M
 | |
|                      IF( B( K, J ).NE.ZERO )THEN
 | |
|                         IF( NOUNIT )
 | |
|      $                     B( K, J ) = B( K, J )/A( K, K )
 | |
|                         DO 80, I = K + 1, M
 | |
|                            B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
 | |
|    80                   CONTINUE
 | |
|                      END IF
 | |
|    90             CONTINUE
 | |
|   100          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Form  B := alpha*inv( A' )*B.
 | |
| *
 | |
|             IF( UPPER )THEN
 | |
|                DO 130, J = 1, N
 | |
|                   DO 120, I = 1, M
 | |
|                      TEMP = ALPHA*B( I, J )
 | |
|                      DO 110, K = 1, I - 1
 | |
|                         TEMP = TEMP - A( K, I )*B( K, J )
 | |
|   110                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/A( I, I )
 | |
|                      B( I, J ) = TEMP
 | |
|   120             CONTINUE
 | |
|   130          CONTINUE
 | |
|             ELSE
 | |
|                DO 160, J = 1, N
 | |
|                   DO 150, I = M, 1, -1
 | |
|                      TEMP = ALPHA*B( I, J )
 | |
|                      DO 140, K = I + 1, M
 | |
|                         TEMP = TEMP - A( K, I )*B( K, J )
 | |
|   140                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/A( I, I )
 | |
|                      B( I, J ) = TEMP
 | |
|   150             CONTINUE
 | |
|   160          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( LSAME( TRANSA, 'N' ) )THEN
 | |
| *
 | |
| *           Form  B := alpha*B*inv( A ).
 | |
| *
 | |
|             IF( UPPER )THEN
 | |
|                DO 210, J = 1, N
 | |
|                   IF( ALPHA.NE.ONE )THEN
 | |
|                      DO 170, I = 1, M
 | |
|                         B( I, J ) = ALPHA*B( I, J )
 | |
|   170                CONTINUE
 | |
|                   END IF
 | |
|                   DO 190, K = 1, J - 1
 | |
|                      IF( A( K, J ).NE.ZERO )THEN
 | |
|                         DO 180, I = 1, M
 | |
|                            B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
 | |
|   180                   CONTINUE
 | |
|                      END IF
 | |
|   190             CONTINUE
 | |
|                   IF( NOUNIT )THEN
 | |
|                      TEMP = ONE/A( J, J )
 | |
|                      DO 200, I = 1, M
 | |
|                         B( I, J ) = TEMP*B( I, J )
 | |
|   200                CONTINUE
 | |
|                   END IF
 | |
|   210          CONTINUE
 | |
|             ELSE
 | |
|                DO 260, J = N, 1, -1
 | |
|                   IF( ALPHA.NE.ONE )THEN
 | |
|                      DO 220, I = 1, M
 | |
|                         B( I, J ) = ALPHA*B( I, J )
 | |
|   220                CONTINUE
 | |
|                   END IF
 | |
|                   DO 240, K = J + 1, N
 | |
|                      IF( A( K, J ).NE.ZERO )THEN
 | |
|                         DO 230, I = 1, M
 | |
|                            B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
 | |
|   230                   CONTINUE
 | |
|                      END IF
 | |
|   240             CONTINUE
 | |
|                   IF( NOUNIT )THEN
 | |
|                      TEMP = ONE/A( J, J )
 | |
|                      DO 250, I = 1, M
 | |
|                        B( I, J ) = TEMP*B( I, J )
 | |
|   250                CONTINUE
 | |
|                   END IF
 | |
|   260          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Form  B := alpha*B*inv( A' ).
 | |
| *
 | |
|             IF( UPPER )THEN
 | |
|                DO 310, K = N, 1, -1
 | |
|                   IF( NOUNIT )THEN
 | |
|                      TEMP = ONE/A( K, K )
 | |
|                      DO 270, I = 1, M
 | |
|                         B( I, K ) = TEMP*B( I, K )
 | |
|   270                CONTINUE
 | |
|                   END IF
 | |
|                   DO 290, J = 1, K - 1
 | |
|                      IF( A( J, K ).NE.ZERO )THEN
 | |
|                         TEMP = A( J, K )
 | |
|                         DO 280, I = 1, M
 | |
|                            B( I, J ) = B( I, J ) - TEMP*B( I, K )
 | |
|   280                   CONTINUE
 | |
|                      END IF
 | |
|   290             CONTINUE
 | |
|                   IF( ALPHA.NE.ONE )THEN
 | |
|                      DO 300, I = 1, M
 | |
|                         B( I, K ) = ALPHA*B( I, K )
 | |
|   300                CONTINUE
 | |
|                   END IF
 | |
|   310          CONTINUE
 | |
|             ELSE
 | |
|                DO 360, K = 1, N
 | |
|                   IF( NOUNIT )THEN
 | |
|                      TEMP = ONE/A( K, K )
 | |
|                      DO 320, I = 1, M
 | |
|                         B( I, K ) = TEMP*B( I, K )
 | |
|   320                CONTINUE
 | |
|                   END IF
 | |
|                   DO 340, J = K + 1, N
 | |
|                      IF( A( J, K ).NE.ZERO )THEN
 | |
|                         TEMP = A( J, K )
 | |
|                         DO 330, I = 1, M
 | |
|                            B( I, J ) = B( I, J ) - TEMP*B( I, K )
 | |
|   330                   CONTINUE
 | |
|                      END IF
 | |
|   340             CONTINUE
 | |
|                   IF( ALPHA.NE.ONE )THEN
 | |
|                      DO 350, I = 1, M
 | |
|                         B( I, K ) = ALPHA*B( I, K )
 | |
|   350                CONTINUE
 | |
|                   END IF
 | |
|   360          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTRSM .
 | |
| *
 | |
|       END
 |