345 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			345 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLA_GBRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general banded matrices.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLA_GBRCOND_C + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrcond_c.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrcond_c.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrcond_c.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION ZLA_GBRCOND_C( TRANS, N, KL, KU, AB,
 | |
| *                                                LDAB, AFB, LDAFB, IPIV,
 | |
| *                                                C, CAPPLY, INFO, WORK,
 | |
| *                                                RWORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       LOGICAL            CAPPLY
 | |
| *       INTEGER            N, KL, KU, KD, KE, LDAB, LDAFB, INFO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
 | |
| *       DOUBLE PRECISION   C( * ), RWORK( * )
 | |
| *
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLA_GBRCOND_C Computes the infinity norm condition number of
 | |
| *>    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>     Specifies the form of the system of equations:
 | |
| *>       = 'N':  A * X = B     (No transpose)
 | |
| *>       = 'T':  A**T * X = B  (Transpose)
 | |
| *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>     The number of linear equations, i.e., the order of the
 | |
| *>     matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>     The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>     The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX*16 array, dimension (LDAB,N)
 | |
| *>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
 | |
| *>     The j-th column of A is stored in the j-th column of the
 | |
| *>     array AB as follows:
 | |
| *>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AFB
 | |
| *> \verbatim
 | |
| *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
 | |
| *>     Details of the LU factorization of the band matrix A, as
 | |
| *>     computed by ZGBTRF.  U is stored as an upper triangular
 | |
| *>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
 | |
| *>     and the multipliers used during the factorization are stored
 | |
| *>     in rows KL+KU+2 to 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFB
 | |
| *> \verbatim
 | |
| *>          LDAFB is INTEGER
 | |
| *>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>     The pivot indices from the factorization A = P*L*U
 | |
| *>     as computed by ZGBTRF; row i of the matrix was interchanged
 | |
| *>     with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (N)
 | |
| *>     The vector C in the formula op(A) * inv(diag(C)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CAPPLY
 | |
| *> \verbatim
 | |
| *>          CAPPLY is LOGICAL
 | |
| *>     If .TRUE. then access the vector C in the formula above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>       = 0:  Successful exit.
 | |
| *>     i > 0:  The ith argument is invalid.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (2*N).
 | |
| *>     Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N).
 | |
| *>     Workspace.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16GBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION ZLA_GBRCOND_C( TRANS, N, KL, KU, AB,
 | |
|      $                                         LDAB, AFB, LDAFB, IPIV,
 | |
|      $                                         C, CAPPLY, INFO, WORK,
 | |
|      $                                         RWORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       LOGICAL            CAPPLY
 | |
|       INTEGER            N, KL, KU, KD, KE, LDAB, LDAFB, INFO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
 | |
|       DOUBLE PRECISION   C( * ), RWORK( * )
 | |
| *
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRANS
 | |
|       INTEGER            KASE, I, J
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, TMP
 | |
|       COMPLEX*16         ZDUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLACN2, ZGBTRS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function Definitions ..
 | |
|       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
|       ZLA_GBRCOND_C = 0.0D+0
 | |
| *
 | |
|       INFO = 0
 | |
|       NOTRANS = LSAME( TRANS, 'N' )
 | |
|       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
 | |
|      $     LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZLA_GBRCOND_C', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm of op(A)*op2(C).
 | |
| *
 | |
|       ANORM = 0.0D+0
 | |
|       KD = KU + 1
 | |
|       KE = KL + 1
 | |
|       IF ( NOTRANS ) THEN
 | |
|          DO I = 1, N
 | |
|             TMP = 0.0D+0
 | |
|             IF ( CAPPLY ) THEN
 | |
|                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
 | |
|                   TMP = TMP + CABS1( AB( KD+I-J, J ) ) / C( J )
 | |
|                END DO
 | |
|             ELSE
 | |
|                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
 | |
|                   TMP = TMP + CABS1( AB( KD+I-J, J ) )
 | |
|                END DO
 | |
|             END IF
 | |
|             RWORK( I ) = TMP
 | |
|             ANORM = MAX( ANORM, TMP )
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO I = 1, N
 | |
|             TMP = 0.0D+0
 | |
|             IF ( CAPPLY ) THEN
 | |
|                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
 | |
|                   TMP = TMP + CABS1( AB( KE-I+J, I ) ) / C( J )
 | |
|                END DO
 | |
|             ELSE
 | |
|                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
 | |
|                   TMP = TMP + CABS1( AB( KE-I+J, I ) )
 | |
|                END DO
 | |
|             END IF
 | |
|             RWORK( I ) = TMP
 | |
|             ANORM = MAX( ANORM, TMP )
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          ZLA_GBRCOND_C = 1.0D+0
 | |
|          RETURN
 | |
|       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Estimate the norm of inv(op(A)).
 | |
| *
 | |
|       AINVNM = 0.0D+0
 | |
| *
 | |
|       KASE = 0
 | |
|    10 CONTINUE
 | |
|       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | |
|       IF( KASE.NE.0 ) THEN
 | |
|          IF( KASE.EQ.2 ) THEN
 | |
| *
 | |
| *           Multiply by R.
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK( I ) = WORK( I ) * RWORK( I )
 | |
|             END DO
 | |
| *
 | |
|             IF ( NOTRANS ) THEN
 | |
|                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
 | |
|      $              IPIV, WORK, N, INFO )
 | |
|             ELSE
 | |
|                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
 | |
|      $              LDAFB, IPIV, WORK, N, INFO )
 | |
|             ENDIF
 | |
| *
 | |
| *           Multiply by inv(C).
 | |
| *
 | |
|             IF ( CAPPLY ) THEN
 | |
|                DO I = 1, N
 | |
|                   WORK( I ) = WORK( I ) * C( I )
 | |
|                END DO
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Multiply by inv(C**H).
 | |
| *
 | |
|             IF ( CAPPLY ) THEN
 | |
|                DO I = 1, N
 | |
|                   WORK( I ) = WORK( I ) * C( I )
 | |
|                END DO
 | |
|             END IF
 | |
| *
 | |
|             IF ( NOTRANS ) THEN
 | |
|                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
 | |
|      $              LDAFB, IPIV,  WORK, N, INFO )
 | |
|             ELSE
 | |
|                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
 | |
|      $              IPIV, WORK, N, INFO )
 | |
|             END IF
 | |
| *
 | |
| *           Multiply by R.
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK( I ) = WORK( I ) * RWORK( I )
 | |
|             END DO
 | |
|          END IF
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|       IF( AINVNM .NE. 0.0D+0 )
 | |
|      $   ZLA_GBRCOND_C = 1.0D+0 / AINVNM
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
|       END
 |