328 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLA_GERCOND estimates the Skeel condition number for a general matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLA_GERCOND + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gercond.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gercond.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gercond.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL FUNCTION SLA_GERCOND ( TRANS, N, A, LDA, AF, LDAF, IPIV,
 | |
| *                                   CMODE, C, INFO, WORK, IWORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            N, LDA, LDAF, INFO, CMODE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), IWORK( * )
 | |
| *       REAL               A( LDA, * ), AF( LDAF, * ), WORK( * ),
 | |
| *      $                   C( * )
 | |
| *      ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    SLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
 | |
| *>    where op2 is determined by CMODE as follows
 | |
| *>    CMODE =  1    op2(C) = C
 | |
| *>    CMODE =  0    op2(C) = I
 | |
| *>    CMODE = -1    op2(C) = inv(C)
 | |
| *>    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
 | |
| *>    is computed by computing scaling factors R such that
 | |
| *>    diag(R)*A*op2(C) is row equilibrated and computing the standard
 | |
| *>    infinity-norm condition number.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>     Specifies the form of the system of equations:
 | |
| *>       = 'N':  A * X = B     (No transpose)
 | |
| *>       = 'T':  A**T * X = B  (Transpose)
 | |
| *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>     The number of linear equations, i.e., the order of the
 | |
| *>     matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>     On entry, the N-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>     The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is REAL array, dimension (LDAF,N)
 | |
| *>     The factors L and U from the factorization
 | |
| *>     A = P*L*U as computed by SGETRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAF
 | |
| *> \verbatim
 | |
| *>          LDAF is INTEGER
 | |
| *>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>     The pivot indices from the factorization A = P*L*U
 | |
| *>     as computed by SGETRF; row i of the matrix was interchanged
 | |
| *>     with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CMODE
 | |
| *> \verbatim
 | |
| *>          CMODE is INTEGER
 | |
| *>     Determines op2(C) in the formula op(A) * op2(C) as follows:
 | |
| *>     CMODE =  1    op2(C) = C
 | |
| *>     CMODE =  0    op2(C) = I
 | |
| *>     CMODE = -1    op2(C) = inv(C)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (N)
 | |
| *>     The vector C in the formula op(A) * op2(C).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>       = 0:  Successful exit.
 | |
| *>     i > 0:  The ith argument is invalid.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (3*N).
 | |
| *>     Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N).
 | |
| *>     Workspace.2
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL FUNCTION SLA_GERCOND ( TRANS, N, A, LDA, AF, LDAF, IPIV,
 | |
|      $                            CMODE, C, INFO, WORK, IWORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            N, LDA, LDAF, INFO, CMODE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), IWORK( * )
 | |
|       REAL               A( LDA, * ), AF( LDAF, * ), WORK( * ),
 | |
|      $                   C( * )
 | |
| *    ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRANS
 | |
|       INTEGER            KASE, I, J
 | |
|       REAL               AINVNM, TMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLACN2, SGETRS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       SLA_GERCOND = 0.0
 | |
| *
 | |
|       INFO = 0
 | |
|       NOTRANS = LSAME( TRANS, 'N' )
 | |
|       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
 | |
|      $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SLA_GERCOND', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          SLA_GERCOND = 1.0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute the equilibration matrix R such that
 | |
| *     inv(R)*A*C has unit 1-norm.
 | |
| *
 | |
|       IF (NOTRANS) THEN
 | |
|          DO I = 1, N
 | |
|             TMP = 0.0
 | |
|             IF ( CMODE .EQ. 1 ) THEN
 | |
|                DO J = 1, N
 | |
|                   TMP = TMP + ABS( A( I, J ) * C( J ) )
 | |
|                END DO
 | |
|             ELSE IF ( CMODE .EQ. 0 ) THEN
 | |
|                DO J = 1, N
 | |
|                   TMP = TMP + ABS( A( I, J ) )
 | |
|                END DO
 | |
|             ELSE
 | |
|                DO J = 1, N
 | |
|                   TMP = TMP + ABS( A( I, J ) / C( J ) )
 | |
|                END DO
 | |
|             END IF
 | |
|             WORK( 2*N+I ) = TMP
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO I = 1, N
 | |
|             TMP = 0.0
 | |
|             IF ( CMODE .EQ. 1 ) THEN
 | |
|                DO J = 1, N
 | |
|                   TMP = TMP + ABS( A( J, I ) * C( J ) )
 | |
|                END DO
 | |
|             ELSE IF ( CMODE .EQ. 0 ) THEN
 | |
|                DO J = 1, N
 | |
|                   TMP = TMP + ABS( A( J, I ) )
 | |
|                END DO
 | |
|             ELSE
 | |
|                DO J = 1, N
 | |
|                   TMP = TMP + ABS( A( J, I ) / C( J ) )
 | |
|                END DO
 | |
|             END IF
 | |
|             WORK( 2*N+I ) = TMP
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Estimate the norm of inv(op(A)).
 | |
| *
 | |
|       AINVNM = 0.0
 | |
| 
 | |
|       KASE = 0
 | |
|    10 CONTINUE
 | |
|       CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
 | |
|       IF( KASE.NE.0 ) THEN
 | |
|          IF( KASE.EQ.2 ) THEN
 | |
| *
 | |
| *           Multiply by R.
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK(I) = WORK(I) * WORK(2*N+I)
 | |
|             END DO
 | |
| 
 | |
|             IF (NOTRANS) THEN
 | |
|                CALL SGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
 | |
|      $            WORK, N, INFO )
 | |
|             ELSE
 | |
|                CALL SGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
 | |
|      $            WORK, N, INFO )
 | |
|             END IF
 | |
| *
 | |
| *           Multiply by inv(C).
 | |
| *
 | |
|             IF ( CMODE .EQ. 1 ) THEN
 | |
|                DO I = 1, N
 | |
|                   WORK( I ) = WORK( I ) / C( I )
 | |
|                END DO
 | |
|             ELSE IF ( CMODE .EQ. -1 ) THEN
 | |
|                DO I = 1, N
 | |
|                   WORK( I ) = WORK( I ) * C( I )
 | |
|                END DO
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Multiply by inv(C**T).
 | |
| *
 | |
|             IF ( CMODE .EQ. 1 ) THEN
 | |
|                DO I = 1, N
 | |
|                   WORK( I ) = WORK( I ) / C( I )
 | |
|                END DO
 | |
|             ELSE IF ( CMODE .EQ. -1 ) THEN
 | |
|                DO I = 1, N
 | |
|                   WORK( I ) = WORK( I ) * C( I )
 | |
|                END DO
 | |
|             END IF
 | |
| 
 | |
|             IF (NOTRANS) THEN
 | |
|                CALL SGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
 | |
|      $            WORK, N, INFO )
 | |
|             ELSE
 | |
|                CALL SGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
 | |
|      $            WORK, N, INFO )
 | |
|             END IF
 | |
| *
 | |
| *           Multiply by R.
 | |
| *
 | |
|             DO I = 1, N
 | |
|                WORK( I ) = WORK( I ) * WORK( 2*N+I )
 | |
|             END DO
 | |
|          END IF
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|       IF( AINVNM .NE. 0.0 )
 | |
|      $   SLA_GERCOND = ( 1.0 / AINVNM )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
|       END
 |