1158 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1158 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle_() continue;
 | 
						|
#define myceiling_(w) {ceil(w)}
 | 
						|
#define myhuge_(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static doublecomplex c_b1 = {0.,0.};
 | 
						|
static doublecomplex c_b2 = {1.,0.};
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* Subroutine */ int zlaqp3rk_(integer *m, integer *n, integer *nrhs, integer 
 | 
						|
	*ioffset, integer *nb, doublereal *abstol, doublereal *reltol, 
 | 
						|
	integer *kp1, doublereal *maxc2nrm, doublecomplex *a, integer *lda, 
 | 
						|
	logical *done, integer *kb, doublereal *maxc2nrmk, doublereal *
 | 
						|
	relmaxc2nrmk, integer *jpiv, doublecomplex *tau, doublereal *vn1, 
 | 
						|
	doublereal *vn2, doublecomplex *auxv, doublecomplex *f, integer *ldf, 
 | 
						|
	integer *iwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2, i__3;
 | 
						|
    doublereal d__1, d__2;
 | 
						|
    doublecomplex z__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    doublereal temp, temp2;
 | 
						|
    integer i__, j, k;
 | 
						|
    doublereal tol3z;
 | 
						|
    integer itemp;
 | 
						|
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublecomplex *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | 
						|
	    integer *), zgemv_(char *, integer *, integer *, 
 | 
						|
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, doublecomplex *, integer *);
 | 
						|
    integer minmnfact;
 | 
						|
    extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *);
 | 
						|
    doublereal myhugeval;
 | 
						|
    integer minmnupdt;
 | 
						|
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
 | 
						|
    integer if__;
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    integer kp;
 | 
						|
    extern integer idamax_(integer *, doublereal *, integer *);
 | 
						|
    extern logical disnan_(doublereal *);
 | 
						|
    integer lsticc;
 | 
						|
    extern /* Subroutine */ int zlarfg_(integer *, doublecomplex *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *);
 | 
						|
    doublereal taunan;
 | 
						|
    doublecomplex aik;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Initialize INFO */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --jpiv;
 | 
						|
    --tau;
 | 
						|
    --vn1;
 | 
						|
    --vn2;
 | 
						|
    --auxv;
 | 
						|
    f_dim1 = *ldf;
 | 
						|
    f_offset = 1 + f_dim1 * 1;
 | 
						|
    f -= f_offset;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
/*     MINMNFACT in the smallest dimension of the submatrix */
 | 
						|
/*     A(IOFFSET+1:M,1:N) to be factorized. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
    i__1 = *m - *ioffset;
 | 
						|
    minmnfact = f2cmin(i__1,*n);
 | 
						|
/* Computing MIN */
 | 
						|
    i__1 = *m - *ioffset, i__2 = *n + *nrhs;
 | 
						|
    minmnupdt = f2cmin(i__1,i__2);
 | 
						|
    *nb = f2cmin(*nb,minmnfact);
 | 
						|
    tol3z = sqrt(dlamch_("Epsilon"));
 | 
						|
    myhugeval = dlamch_("Overflow");
 | 
						|
 | 
						|
/*     Compute factorization in a while loop over NB columns, */
 | 
						|
/*     K is the column index in the block A(1:M,1:N). */
 | 
						|
 | 
						|
    k = 0;
 | 
						|
    lsticc = 0;
 | 
						|
    *done = FALSE_;
 | 
						|
 | 
						|
    while(k < *nb && lsticc == 0) {
 | 
						|
	++k;
 | 
						|
	i__ = *ioffset + k;
 | 
						|
 | 
						|
	if (i__ == 1) {
 | 
						|
 | 
						|
/*           We are at the first column of the original whole matrix A_orig, */
 | 
						|
/*           therefore we use the computed KP1 and MAXC2NRM from the */
 | 
						|
/*           main routine. */
 | 
						|
 | 
						|
	    kp = *kp1;
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Determine the pivot column in K-th step, i.e. the index */
 | 
						|
/*           of the column with the maximum 2-norm in the */
 | 
						|
/*           submatrix A(I:M,K:N). */
 | 
						|
 | 
						|
	    i__1 = *n - k + 1;
 | 
						|
	    kp = k - 1 + idamax_(&i__1, &vn1[k], &c__1);
 | 
						|
 | 
						|
/*           Determine the maximum column 2-norm and the relative maximum */
 | 
						|
/*           column 2-norm of the submatrix A(I:M,K:N) in step K. */
 | 
						|
 | 
						|
	    *maxc2nrmk = vn1[kp];
 | 
						|
 | 
						|
/*           ============================================================ */
 | 
						|
 | 
						|
/*           Check if the submatrix A(I:M,K:N) contains NaN, set */
 | 
						|
/*           INFO parameter to the column number, where the first NaN */
 | 
						|
/*           is found and return from the routine. */
 | 
						|
/*           We need to check the condition only if the */
 | 
						|
/*           column index (same as row index) of the original whole */
 | 
						|
/*           matrix is larger than 1, since the condition for whole */
 | 
						|
/*           original matrix is checked in the main routine. */
 | 
						|
 | 
						|
	    if (disnan_(maxc2nrmk)) {
 | 
						|
 | 
						|
		*done = TRUE_;
 | 
						|
 | 
						|
/*              Set KB, the number of factorized partial columns */
 | 
						|
/*                      that are non-zero in each step in the block, */
 | 
						|
/*                      i.e. the rank of the factor R. */
 | 
						|
/*              Set IF, the number of processed rows in the block, which */
 | 
						|
/*                      is the same as the number of processed rows in */
 | 
						|
/*                      the original whole matrix A_orig. */
 | 
						|
 | 
						|
		*kb = k - 1;
 | 
						|
		if__ = i__ - 1;
 | 
						|
		*info = *kb + kp;
 | 
						|
 | 
						|
/*              Set RELMAXC2NRMK to NaN. */
 | 
						|
 | 
						|
		*relmaxc2nrmk = *maxc2nrmk;
 | 
						|
 | 
						|
/*              There is no need to apply the block reflector to the */
 | 
						|
/*              residual of the matrix A stored in A(KB+1:M,KB+1:N), */
 | 
						|
/*              since the submatrix contains NaN and we stop */
 | 
						|
/*              the computation. */
 | 
						|
/*              But, we need to apply the block reflector to the residual */
 | 
						|
/*              right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
 | 
						|
/*              residual right hand sides exist.  This occurs */
 | 
						|
/*              when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
 | 
						|
 | 
						|
/*              A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
 | 
						|
/*                               A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
 | 
						|
		if (*nrhs > 0 && *kb < *m - *ioffset) {
 | 
						|
		    i__1 = *m - if__;
 | 
						|
		    z__1.r = -1., z__1.i = 0.;
 | 
						|
		    zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs,
 | 
						|
			     kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 
 | 
						|
			    + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * 
 | 
						|
			    a_dim1], lda);
 | 
						|
		}
 | 
						|
 | 
						|
/*              There is no need to recompute the 2-norm of the */
 | 
						|
/*              difficult columns, since we stop the factorization. */
 | 
						|
 | 
						|
/*              Array TAU(KF+1:MINMNFACT) is not set and contains */
 | 
						|
/*              undefined elements. */
 | 
						|
 | 
						|
/*              Return from the routine. */
 | 
						|
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Quick return, if the submatrix A(I:M,K:N) is */
 | 
						|
/*           a zero matrix. We need to check it only if the column index */
 | 
						|
/*           (same as row index) is larger than 1, since the condition */
 | 
						|
/*           for the whole original matrix A_orig is checked in the main */
 | 
						|
/*           routine. */
 | 
						|
 | 
						|
	    if (*maxc2nrmk == 0.) {
 | 
						|
 | 
						|
		*done = TRUE_;
 | 
						|
 | 
						|
/*              Set KB, the number of factorized partial columns */
 | 
						|
/*                      that are non-zero in each step in the block, */
 | 
						|
/*                      i.e. the rank of the factor R. */
 | 
						|
/*              Set IF, the number of processed rows in the block, which */
 | 
						|
/*                      is the same as the number of processed rows in */
 | 
						|
/*                      the original whole matrix A_orig. */
 | 
						|
 | 
						|
		*kb = k - 1;
 | 
						|
		if__ = i__ - 1;
 | 
						|
		*relmaxc2nrmk = 0.;
 | 
						|
 | 
						|
/*              There is no need to apply the block reflector to the */
 | 
						|
/*              residual of the matrix A stored in A(KB+1:M,KB+1:N), */
 | 
						|
/*              since the submatrix is zero and we stop the computation. */
 | 
						|
/*              But, we need to apply the block reflector to the residual */
 | 
						|
/*              right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
 | 
						|
/*              residual right hand sides exist.  This occurs */
 | 
						|
/*              when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
 | 
						|
 | 
						|
/*              A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
 | 
						|
/*                               A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
 | 
						|
 | 
						|
		if (*nrhs > 0 && *kb < *m - *ioffset) {
 | 
						|
		    i__1 = *m - if__;
 | 
						|
		    z__1.r = -1., z__1.i = 0.;
 | 
						|
		    zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs,
 | 
						|
			     kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 
 | 
						|
			    + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * 
 | 
						|
			    a_dim1], lda);
 | 
						|
		}
 | 
						|
 | 
						|
/*              There is no need to recompute the 2-norm of the */
 | 
						|
/*              difficult columns, since we stop the factorization. */
 | 
						|
 | 
						|
/*              Set TAUs corresponding to the columns that were not */
 | 
						|
/*              factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */
 | 
						|
/*              which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */
 | 
						|
 | 
						|
		i__1 = minmnfact;
 | 
						|
		for (j = k; j <= i__1; ++j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    tau[i__2].r = 0., tau[i__2].i = 0.;
 | 
						|
		}
 | 
						|
 | 
						|
/*              Return from the routine. */
 | 
						|
 | 
						|
		return 0;
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
/*           ============================================================ */
 | 
						|
 | 
						|
/*           Check if the submatrix A(I:M,K:N) contains Inf, */
 | 
						|
/*           set INFO parameter to the column number, where */
 | 
						|
/*           the first Inf is found plus N, and continue */
 | 
						|
/*           the computation. */
 | 
						|
/*           We need to check the condition only if the */
 | 
						|
/*           column index (same as row index) of the original whole */
 | 
						|
/*           matrix is larger than 1, since the condition for whole */
 | 
						|
/*           original matrix is checked in the main routine. */
 | 
						|
 | 
						|
	    if (*info == 0 && *maxc2nrmk > myhugeval) {
 | 
						|
		*info = *n + k - 1 + kp;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           ============================================================ */
 | 
						|
 | 
						|
/*           Test for the second and third tolerance stopping criteria. */
 | 
						|
/*           NOTE: There is no need to test for ABSTOL.GE.ZERO, since */
 | 
						|
/*           MAXC2NRMK is non-negative. Similarly, there is no need */
 | 
						|
/*           to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */
 | 
						|
/*           non-negative. */
 | 
						|
/*           We need to check the condition only if the */
 | 
						|
/*           column index (same as row index) of the original whole */
 | 
						|
/*           matrix is larger than 1, since the condition for whole */
 | 
						|
/*           original matrix is checked in the main routine. */
 | 
						|
 | 
						|
	    *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
 | 
						|
 | 
						|
	    if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
 | 
						|
 | 
						|
		*done = TRUE_;
 | 
						|
 | 
						|
/*              Set KB, the number of factorized partial columns */
 | 
						|
/*                      that are non-zero in each step in the block, */
 | 
						|
/*                      i.e. the rank of the factor R. */
 | 
						|
/*              Set IF, the number of processed rows in the block, which */
 | 
						|
/*                      is the same as the number of processed rows in */
 | 
						|
/*                      the original whole matrix A_orig; */
 | 
						|
 | 
						|
		*kb = k - 1;
 | 
						|
		if__ = i__ - 1;
 | 
						|
 | 
						|
/*              Apply the block reflector to the residual of the */
 | 
						|
/*              matrix A and the residual of the right hand sides B, if */
 | 
						|
/*              the residual matrix and and/or the residual of the right */
 | 
						|
/*              hand sides exist,  i.e. if the submatrix */
 | 
						|
/*              A(I+1:M,KB+1:N+NRHS) exists.  This occurs when */
 | 
						|
/*                 KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
 | 
						|
 | 
						|
/*              A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
 | 
						|
/*                             A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */
 | 
						|
 | 
						|
		if (*kb < minmnupdt) {
 | 
						|
		    i__1 = *m - if__;
 | 
						|
		    i__2 = *n + *nrhs - *kb;
 | 
						|
		    z__1.r = -1., z__1.i = 0.;
 | 
						|
		    zgemm_("No transpose", "Conjugate transpose", &i__1, &
 | 
						|
			    i__2, kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*
 | 
						|
			    kb + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*kb 
 | 
						|
			    + 1) * a_dim1], lda);
 | 
						|
		}
 | 
						|
 | 
						|
/*              There is no need to recompute the 2-norm of the */
 | 
						|
/*              difficult columns, since we stop the factorization. */
 | 
						|
 | 
						|
/*              Set TAUs corresponding to the columns that were not */
 | 
						|
/*              factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */
 | 
						|
/*              which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */
 | 
						|
 | 
						|
		i__1 = minmnfact;
 | 
						|
		for (j = k; j <= i__1; ++j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    tau[i__2].r = 0., tau[i__2].i = 0.;
 | 
						|
		}
 | 
						|
 | 
						|
/*              Return from the routine. */
 | 
						|
 | 
						|
		return 0;
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
/*           ============================================================ */
 | 
						|
 | 
						|
/*           End ELSE of IF(I.EQ.1) */
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
/*        =============================================================== */
 | 
						|
 | 
						|
/*        If the pivot column is not the first column of the */
 | 
						|
/*        subblock A(1:M,K:N): */
 | 
						|
/*        1) swap the K-th column and the KP-th pivot column */
 | 
						|
/*           in A(1:M,1:N); */
 | 
						|
/*        2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */
 | 
						|
/*        3) copy the K-th element into the KP-th element of the partial */
 | 
						|
/*           and exact 2-norm vectors VN1 and VN2. (Swap is not needed */
 | 
						|
/*           for VN1 and VN2 since we use the element with the index */
 | 
						|
/*           larger than K in the next loop step.) */
 | 
						|
/*        4) Save the pivot interchange with the indices relative to the */
 | 
						|
/*           the original matrix A_orig, not the block A(1:M,1:N). */
 | 
						|
 | 
						|
	if (kp != k) {
 | 
						|
	    zswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    zswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf);
 | 
						|
	    vn1[kp] = vn1[k];
 | 
						|
	    vn2[kp] = vn2[k];
 | 
						|
	    itemp = jpiv[kp];
 | 
						|
	    jpiv[kp] = jpiv[k];
 | 
						|
	    jpiv[k] = itemp;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Apply previous Householder reflectors to column K: */
 | 
						|
/*        A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**H. */
 | 
						|
 | 
						|
	if (k > 1) {
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = k + j * f_dim1;
 | 
						|
		d_cnjg(&z__1, &f[k + j * f_dim1]);
 | 
						|
		f[i__2].r = z__1.r, f[i__2].i = z__1.i;
 | 
						|
	    }
 | 
						|
	    i__1 = *m - i__ + 1;
 | 
						|
	    i__2 = k - 1;
 | 
						|
	    z__1.r = -1., z__1.i = 0.;
 | 
						|
	    zgemv_("No transpose", &i__1, &i__2, &z__1, &a[i__ + a_dim1], lda,
 | 
						|
		     &f[k + f_dim1], ldf, &c_b2, &a[i__ + k * a_dim1], &c__1);
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = k + j * f_dim1;
 | 
						|
		d_cnjg(&z__1, &f[k + j * f_dim1]);
 | 
						|
		f[i__2].r = z__1.r, f[i__2].i = z__1.i;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Generate elementary reflector H(k) using the column A(I:M,K). */
 | 
						|
 | 
						|
	if (i__ < *m) {
 | 
						|
	    i__1 = *m - i__ + 1;
 | 
						|
	    zlarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], &
 | 
						|
		    c__1, &tau[k]);
 | 
						|
	} else {
 | 
						|
	    i__1 = k;
 | 
						|
	    tau[i__1].r = 0., tau[i__1].i = 0.;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Check if TAU(K) contains NaN, set INFO parameter */
 | 
						|
/*        to the column number where NaN is found and return from */
 | 
						|
/*        the routine. */
 | 
						|
/*        NOTE: There is no need to check TAU(K) for Inf, */
 | 
						|
/*        since ZLARFG cannot produce TAU(KK) or Householder vector */
 | 
						|
/*        below the diagonal containing Inf. Only BETA on the diagonal, */
 | 
						|
/*        returned by ZLARFG can contain Inf, which requires */
 | 
						|
/*        TAU(K) to contain NaN. Therefore, this case of generating Inf */
 | 
						|
/*        by ZLARFG is covered by checking TAU(K) for NaN. */
 | 
						|
 | 
						|
	i__1 = k;
 | 
						|
	d__1 = tau[i__1].r;
 | 
						|
	if (disnan_(&d__1)) {
 | 
						|
	    i__1 = k;
 | 
						|
	    taunan = tau[i__1].r;
 | 
						|
	} else /* if(complicated condition) */ {
 | 
						|
	    d__1 = d_imag(&tau[k]);
 | 
						|
	    if (disnan_(&d__1)) {
 | 
						|
		taunan = d_imag(&tau[k]);
 | 
						|
	    } else {
 | 
						|
		taunan = 0.;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	if (disnan_(&taunan)) {
 | 
						|
 | 
						|
	    *done = TRUE_;
 | 
						|
 | 
						|
/*           Set KB, the number of factorized partial columns */
 | 
						|
/*                   that are non-zero in each step in the block, */
 | 
						|
/*                   i.e. the rank of the factor R. */
 | 
						|
/*           Set IF, the number of processed rows in the block, which */
 | 
						|
/*                   is the same as the number of processed rows in */
 | 
						|
/*                   the original whole matrix A_orig. */
 | 
						|
 | 
						|
	    *kb = k - 1;
 | 
						|
	    if__ = i__ - 1;
 | 
						|
	    *info = k;
 | 
						|
 | 
						|
/*           Set MAXC2NRMK and  RELMAXC2NRMK to NaN. */
 | 
						|
 | 
						|
	    *maxc2nrmk = taunan;
 | 
						|
	    *relmaxc2nrmk = taunan;
 | 
						|
 | 
						|
/*           There is no need to apply the block reflector to the */
 | 
						|
/*           residual of the matrix A stored in A(KB+1:M,KB+1:N), */
 | 
						|
/*           since the submatrix contains NaN and we stop */
 | 
						|
/*           the computation. */
 | 
						|
/*           But, we need to apply the block reflector to the residual */
 | 
						|
/*           right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
 | 
						|
/*           residual right hand sides exist.  This occurs */
 | 
						|
/*           when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
 | 
						|
 | 
						|
/*           A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
 | 
						|
/*                            A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
 | 
						|
 | 
						|
	    if (*nrhs > 0 && *kb < *m - *ioffset) {
 | 
						|
		i__1 = *m - if__;
 | 
						|
		z__1.r = -1., z__1.i = 0.;
 | 
						|
		zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs, kb,
 | 
						|
			 &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 + 
 | 
						|
			f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * a_dim1],
 | 
						|
			 lda);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           There is no need to recompute the 2-norm of the */
 | 
						|
/*           difficult columns, since we stop the factorization. */
 | 
						|
 | 
						|
/*           Array TAU(KF+1:MINMNFACT) is not set and contains */
 | 
						|
/*           undefined elements. */
 | 
						|
 | 
						|
/*           Return from the routine. */
 | 
						|
 | 
						|
	    return 0;
 | 
						|
	}
 | 
						|
 | 
						|
/*        =============================================================== */
 | 
						|
 | 
						|
	i__1 = i__ + k * a_dim1;
 | 
						|
	aik.r = a[i__1].r, aik.i = a[i__1].i;
 | 
						|
	i__1 = i__ + k * a_dim1;
 | 
						|
	a[i__1].r = 1., a[i__1].i = 0.;
 | 
						|
 | 
						|
/*        =============================================================== */
 | 
						|
 | 
						|
/*        Compute the current K-th column of F: */
 | 
						|
/*          1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**H * A(I:M,K). */
 | 
						|
 | 
						|
	if (k < *n + *nrhs) {
 | 
						|
	    i__1 = *m - i__ + 1;
 | 
						|
	    i__2 = *n + *nrhs - k;
 | 
						|
	    zgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[i__ + (k 
 | 
						|
		    + 1) * a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, &
 | 
						|
		    f[k + 1 + k * f_dim1], &c__1);
 | 
						|
	}
 | 
						|
 | 
						|
/*           2) Zero out elements above and on the diagonal of the */
 | 
						|
/*              column K in matrix F, i.e elements F(1:K,K). */
 | 
						|
 | 
						|
	i__1 = k;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = j + k * f_dim1;
 | 
						|
	    f[i__2].r = 0., f[i__2].i = 0.;
 | 
						|
	}
 | 
						|
 | 
						|
/*         3) Incremental updating of the K-th column of F: */
 | 
						|
/*        F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**H */
 | 
						|
/*                    * A(I:M,K). */
 | 
						|
 | 
						|
	if (k > 1) {
 | 
						|
	    i__1 = *m - i__ + 1;
 | 
						|
	    i__2 = k - 1;
 | 
						|
	    i__3 = k;
 | 
						|
	    z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
 | 
						|
	    zgemv_("Conjugate Transpose", &i__1, &i__2, &z__1, &a[i__ + 
 | 
						|
		    a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, &auxv[1]
 | 
						|
		    , &c__1);
 | 
						|
 | 
						|
	    i__1 = *n + *nrhs;
 | 
						|
	    i__2 = k - 1;
 | 
						|
	    zgemv_("No transpose", &i__1, &i__2, &c_b2, &f[f_dim1 + 1], ldf, &
 | 
						|
		    auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1);
 | 
						|
	}
 | 
						|
 | 
						|
/*        =============================================================== */
 | 
						|
 | 
						|
/*        Update the current I-th row of A: */
 | 
						|
/*        A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */
 | 
						|
/*                         - A(I,1:K)*F(K+1:N+NRHS,1:K)**H. */
 | 
						|
 | 
						|
	if (k < *n + *nrhs) {
 | 
						|
	    i__1 = *n + *nrhs - k;
 | 
						|
	    z__1.r = -1., z__1.i = 0.;
 | 
						|
	    zgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, &
 | 
						|
		    z__1, &a[i__ + a_dim1], lda, &f[k + 1 + f_dim1], ldf, &
 | 
						|
		    c_b2, &a[i__ + (k + 1) * a_dim1], lda);
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = i__ + k * a_dim1;
 | 
						|
	a[i__1].r = aik.r, a[i__1].i = aik.i;
 | 
						|
 | 
						|
/*        Update the partial column 2-norms for the residual matrix, */
 | 
						|
/*        only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */
 | 
						|
/*        when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */
 | 
						|
 | 
						|
	if (k < minmnfact) {
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = k + 1; j <= i__1; ++j) {
 | 
						|
		if (vn1[j] != 0.) {
 | 
						|
 | 
						|
/*                 NOTE: The following lines follow from the analysis in */
 | 
						|
/*                 Lapack Working Note 176. */
 | 
						|
 | 
						|
		    temp = z_abs(&a[i__ + j * a_dim1]) / vn1[j];
 | 
						|
/* Computing MAX */
 | 
						|
		    d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
 | 
						|
		    temp = f2cmax(d__1,d__2);
 | 
						|
/* Computing 2nd power */
 | 
						|
		    d__1 = vn1[j] / vn2[j];
 | 
						|
		    temp2 = temp * (d__1 * d__1);
 | 
						|
		    if (temp2 <= tol3z) {
 | 
						|
 | 
						|
/*                    At J-index, we have a difficult column for the */
 | 
						|
/*                    update of the 2-norm. Save the index of the previous */
 | 
						|
/*                    difficult column in IWORK(J-1). */
 | 
						|
/*                    NOTE: ILSTCC > 1, threfore we can use IWORK only */
 | 
						|
/*                    with N-1 elements, where the elements are */
 | 
						|
/*                    shifted by 1 to the left. */
 | 
						|
 | 
						|
			iwork[j - 1] = lsticc;
 | 
						|
 | 
						|
/*                    Set the index of the last difficult column LSTICC. */
 | 
						|
 | 
						|
			lsticc = j;
 | 
						|
 | 
						|
		    } else {
 | 
						|
			vn1[j] *= sqrt(temp);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
/*        End of while loop. */
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
/*     Now, afler the loop: */
 | 
						|
/*        Set KB, the number of factorized columns in the block; */
 | 
						|
/*        Set IF, the number of processed rows in the block, which */
 | 
						|
/*                is the same as the number of processed rows in */
 | 
						|
/*                the original whole matrix A_orig, IF = IOFFSET + KB. */
 | 
						|
 | 
						|
    *kb = k;
 | 
						|
    if__ = i__;
 | 
						|
 | 
						|
/*     Apply the block reflector to the residual of the matrix A */
 | 
						|
/*     and the residual of the right hand sides B, if the residual */
 | 
						|
/*     matrix and and/or the residual of the right hand sides */
 | 
						|
/*     exist,  i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */
 | 
						|
/*     This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
 | 
						|
 | 
						|
/*     A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
 | 
						|
/*                         A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */
 | 
						|
 | 
						|
    if (*kb < minmnupdt) {
 | 
						|
	i__1 = *m - if__;
 | 
						|
	i__2 = *n + *nrhs - *kb;
 | 
						|
	z__1.r = -1., z__1.i = 0.;
 | 
						|
	zgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &z__1,
 | 
						|
		 &a[if__ + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2,
 | 
						|
		 &a[if__ + 1 + (*kb + 1) * a_dim1], lda);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Recompute the 2-norm of the difficult columns. */
 | 
						|
/*     Loop over the index of the difficult columns from the largest */
 | 
						|
/*     to the smallest index. */
 | 
						|
 | 
						|
    while(lsticc > 0) {
 | 
						|
 | 
						|
/*        LSTICC is the index of the last difficult column is greater */
 | 
						|
/*        than 1. */
 | 
						|
/*        ITEMP is the index of the previous difficult column. */
 | 
						|
 | 
						|
	itemp = iwork[lsticc - 1];
 | 
						|
 | 
						|
/*        Compute the 2-norm explicilty for the last difficult column and */
 | 
						|
/*        save it in the partial and exact 2-norm vectors VN1 and VN2. */
 | 
						|
 | 
						|
/*        NOTE: The computation of VN1( LSTICC ) relies on the fact that */
 | 
						|
/*        DZNRM2 does not fail on vectors with norm below the value of */
 | 
						|
/*        SQRT(DLAMCH('S')) */
 | 
						|
 | 
						|
	i__1 = *m - if__;
 | 
						|
	vn1[lsticc] = dznrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1);
 | 
						|
	vn2[lsticc] = vn1[lsticc];
 | 
						|
 | 
						|
/*        Downdate the index of the last difficult column to */
 | 
						|
/*        the index of the previous difficult column. */
 | 
						|
 | 
						|
	lsticc = itemp;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of ZLAQP3RK */
 | 
						|
 | 
						|
} /* zlaqp3rk_ */
 | 
						|
 |