241 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGTTRF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGTTRF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgttrf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgttrf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgttrf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX*16         D( * ), DL( * ), DU( * ), DU2( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGTTRF computes an LU factorization of a complex tridiagonal matrix A
 | 
						|
*> using elimination with partial pivoting and row interchanges.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = L * U
 | 
						|
*> where L is a product of permutation and unit lower bidiagonal
 | 
						|
*> matrices and U is upper triangular with nonzeros in only the main
 | 
						|
*> diagonal and first two superdiagonals.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DL
 | 
						|
*> \verbatim
 | 
						|
*>          DL is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          On entry, DL must contain the (n-1) sub-diagonal elements of
 | 
						|
*>          A.
 | 
						|
*>
 | 
						|
*>          On exit, DL is overwritten by the (n-1) multipliers that
 | 
						|
*>          define the matrix L from the LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX*16 array, dimension (N)
 | 
						|
*>          On entry, D must contain the diagonal elements of A.
 | 
						|
*>
 | 
						|
*>          On exit, D is overwritten by the n diagonal elements of the
 | 
						|
*>          upper triangular matrix U from the LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DU
 | 
						|
*> \verbatim
 | 
						|
*>          DU is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          On entry, DU must contain the (n-1) super-diagonal elements
 | 
						|
*>          of A.
 | 
						|
*>
 | 
						|
*>          On exit, DU is overwritten by the (n-1) elements of the first
 | 
						|
*>          super-diagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DU2
 | 
						|
*> \verbatim
 | 
						|
*>          DU2 is COMPLEX*16 array, dimension (N-2)
 | 
						|
*>          On exit, DU2 is overwritten by the (n-2) elements of the
 | 
						|
*>          second super-diagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | 
						|
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | 
						|
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | 
						|
*>          required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -k, the k-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization
 | 
						|
*>                has been completed, but the factor U is exactly
 | 
						|
*>                singular, and division by zero will occur if it is used
 | 
						|
*>                to solve a system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16GTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX*16         D( * ), DL( * ), DU( * ), DU2( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      COMPLEX*16         FACT, TEMP, ZDUM
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DIMAG
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
         CALL XERBLA( 'ZGTTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Initialize IPIV(i) = i and DU2(i) = 0
 | 
						|
*
 | 
						|
      DO 10 I = 1, N
 | 
						|
         IPIV( I ) = I
 | 
						|
   10 CONTINUE
 | 
						|
      DO 20 I = 1, N - 2
 | 
						|
         DU2( I ) = ZERO
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      DO 30 I = 1, N - 2
 | 
						|
         IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
 | 
						|
*
 | 
						|
*           No row interchange required, eliminate DL(I)
 | 
						|
*
 | 
						|
            IF( CABS1( D( I ) ).NE.ZERO ) THEN
 | 
						|
               FACT = DL( I ) / D( I )
 | 
						|
               DL( I ) = FACT
 | 
						|
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Interchange rows I and I+1, eliminate DL(I)
 | 
						|
*
 | 
						|
            FACT = D( I ) / DL( I )
 | 
						|
            D( I ) = DL( I )
 | 
						|
            DL( I ) = FACT
 | 
						|
            TEMP = DU( I )
 | 
						|
            DU( I ) = D( I+1 )
 | 
						|
            D( I+1 ) = TEMP - FACT*D( I+1 )
 | 
						|
            DU2( I ) = DU( I+1 )
 | 
						|
            DU( I+1 ) = -FACT*DU( I+1 )
 | 
						|
            IPIV( I ) = I + 1
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
      IF( N.GT.1 ) THEN
 | 
						|
         I = N - 1
 | 
						|
         IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
 | 
						|
            IF( CABS1( D( I ) ).NE.ZERO ) THEN
 | 
						|
               FACT = DL( I ) / D( I )
 | 
						|
               DL( I ) = FACT
 | 
						|
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            FACT = D( I ) / DL( I )
 | 
						|
            D( I ) = DL( I )
 | 
						|
            DL( I ) = FACT
 | 
						|
            TEMP = DU( I )
 | 
						|
            DU( I ) = D( I+1 )
 | 
						|
            D( I+1 ) = TEMP - FACT*D( I+1 )
 | 
						|
            IPIV( I ) = I + 1
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check for a zero on the diagonal of U.
 | 
						|
*
 | 
						|
      DO 40 I = 1, N
 | 
						|
         IF( CABS1( D( I ) ).EQ.ZERO ) THEN
 | 
						|
            INFO = I
 | 
						|
            GO TO 50
 | 
						|
         END IF
 | 
						|
   40 CONTINUE
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGTTRF
 | 
						|
*
 | 
						|
      END
 |