289 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SORGQR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SORGQR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgqr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgqr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgqr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, K, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SORGQR generates an M-by-N real matrix Q with orthonormal columns,
 | 
						|
*> which is defined as the first N columns of a product of K elementary
 | 
						|
*> reflectors of order M
 | 
						|
*>
 | 
						|
*>       Q  =  H(1) H(2) . . . H(k)
 | 
						|
*>
 | 
						|
*> as returned by SGEQRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix Q. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix Q. M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines the
 | 
						|
*>          matrix Q. N >= K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the i-th column must contain the vector which
 | 
						|
*>          defines the elementary reflector H(i), for i = 1,2,...,k, as
 | 
						|
*>          returned by SGEQRF in the first k columns of its array
 | 
						|
*>          argument A.
 | 
						|
*>          On exit, the M-by-N matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The first dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension (K)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i), as returned by SGEQRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,N).
 | 
						|
*>          For optimum performance LWORK >= N*NB, where NB is the
 | 
						|
*>          optimal blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument has an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup ungqr
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, K, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
 | 
						|
     $                   LWKOPT, NB, NBMIN, NX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLARFB, SLARFT, SORG2R, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               SROUNDUP_LWORK
 | 
						|
      EXTERNAL           ILAENV, SROUNDUP_LWORK
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NB = ILAENV( 1, 'SORGQR', ' ', M, N, K, -1 )
 | 
						|
      LWKOPT = MAX( 1, N )*NB
 | 
						|
      WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SORGQR', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NBMIN = 2
 | 
						|
      NX = 0
 | 
						|
      IWS = N
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
 | 
						|
*
 | 
						|
*        Determine when to cross over from blocked to unblocked code.
 | 
						|
*
 | 
						|
         NX = MAX( 0, ILAENV( 3, 'SORGQR', ' ', M, N, K, -1 ) )
 | 
						|
         IF( NX.LT.K ) THEN
 | 
						|
*
 | 
						|
*           Determine if workspace is large enough for blocked code.
 | 
						|
*
 | 
						|
            LDWORK = N
 | 
						|
            IWS = LDWORK*NB
 | 
						|
            IF( LWORK.LT.IWS ) THEN
 | 
						|
*
 | 
						|
*              Not enough workspace to use optimal NB:  reduce NB and
 | 
						|
*              determine the minimum value of NB.
 | 
						|
*
 | 
						|
               NB = LWORK / LDWORK
 | 
						|
               NBMIN = MAX( 2, ILAENV( 2, 'SORGQR', ' ', M, N, K, -1 ) )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
 | 
						|
*
 | 
						|
*        Use blocked code after the last block.
 | 
						|
*        The first kk columns are handled by the block method.
 | 
						|
*
 | 
						|
         KI = ( ( K-NX-1 ) / NB )*NB
 | 
						|
         KK = MIN( K, KI+NB )
 | 
						|
*
 | 
						|
*        Set A(1:kk,kk+1:n) to zero.
 | 
						|
*
 | 
						|
         DO 20 J = KK + 1, N
 | 
						|
            DO 10 I = 1, KK
 | 
						|
               A( I, J ) = ZERO
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
      ELSE
 | 
						|
         KK = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Use unblocked code for the last or only block.
 | 
						|
*
 | 
						|
      IF( KK.LT.N )
 | 
						|
     $   CALL SORG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
 | 
						|
     $                TAU( KK+1 ), WORK, IINFO )
 | 
						|
*
 | 
						|
      IF( KK.GT.0 ) THEN
 | 
						|
*
 | 
						|
*        Use blocked code
 | 
						|
*
 | 
						|
         DO 50 I = KI + 1, 1, -NB
 | 
						|
            IB = MIN( NB, K-I+1 )
 | 
						|
            IF( I+IB.LE.N ) THEN
 | 
						|
*
 | 
						|
*              Form the triangular factor of the block reflector
 | 
						|
*              H = H(i) H(i+1) . . . H(i+ib-1)
 | 
						|
*
 | 
						|
               CALL SLARFT( 'Forward', 'Columnwise', M-I+1, IB,
 | 
						|
     $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
 | 
						|
*
 | 
						|
*              Apply H to A(i:m,i+ib:n) from the left
 | 
						|
*
 | 
						|
               CALL SLARFB( 'Left', 'No transpose', 'Forward',
 | 
						|
     $                      'Columnwise', M-I+1, N-I-IB+1, IB,
 | 
						|
     $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
 | 
						|
     $                      LDA, WORK( IB+1 ), LDWORK )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Apply H to rows i:m of current block
 | 
						|
*
 | 
						|
            CALL SORG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK,
 | 
						|
     $                   IINFO )
 | 
						|
*
 | 
						|
*           Set rows 1:i-1 of current block to zero
 | 
						|
*
 | 
						|
            DO 40 J = I, I + IB - 1
 | 
						|
               DO 30 L = 1, I - 1
 | 
						|
                  A( L, J ) = ZERO
 | 
						|
   30          CONTINUE
 | 
						|
   40       CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = SROUNDUP_LWORK(IWS)
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SORGQR
 | 
						|
*
 | 
						|
      END
 |