863 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			863 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGGEVX + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggevx.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggevx.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggevx.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 | 
						|
*                          ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
 | 
						|
*                          IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
 | 
						|
*                          RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | 
						|
*       REAL               ABNRM, BBNRM
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            BWORK( * )
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
*      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
 | 
						|
*      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
 | 
						|
*      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
 | 
						|
*> the generalized eigenvalues, and optionally, the left and/or right
 | 
						|
*> generalized eigenvectors.
 | 
						|
*>
 | 
						|
*> Optionally also, it computes a balancing transformation to improve
 | 
						|
*> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
 | 
						|
*> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
 | 
						|
*> the eigenvalues (RCONDE), and reciprocal condition numbers for the
 | 
						|
*> right eigenvectors (RCONDV).
 | 
						|
*>
 | 
						|
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
 | 
						|
*> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
 | 
						|
*> singular. It is usually represented as the pair (alpha,beta), as
 | 
						|
*> there is a reasonable interpretation for beta=0, and even for both
 | 
						|
*> being zero.
 | 
						|
*>
 | 
						|
*> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
 | 
						|
*> of (A,B) satisfies
 | 
						|
*>
 | 
						|
*>                  A * v(j) = lambda(j) * B * v(j) .
 | 
						|
*>
 | 
						|
*> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
 | 
						|
*> of (A,B) satisfies
 | 
						|
*>
 | 
						|
*>                  u(j)**H * A  = lambda(j) * u(j)**H * B.
 | 
						|
*>
 | 
						|
*> where u(j)**H is the conjugate-transpose of u(j).
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] BALANC
 | 
						|
*> \verbatim
 | 
						|
*>          BALANC is CHARACTER*1
 | 
						|
*>          Specifies the balance option to be performed.
 | 
						|
*>          = 'N':  do not diagonally scale or permute;
 | 
						|
*>          = 'P':  permute only;
 | 
						|
*>          = 'S':  scale only;
 | 
						|
*>          = 'B':  both permute and scale.
 | 
						|
*>          Computed reciprocal condition numbers will be for the
 | 
						|
*>          matrices after permuting and/or balancing. Permuting does
 | 
						|
*>          not change condition numbers (in exact arithmetic), but
 | 
						|
*>          balancing does.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVL
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVL is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the left generalized eigenvectors;
 | 
						|
*>          = 'V':  compute the left generalized eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVR
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVR is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the right generalized eigenvectors;
 | 
						|
*>          = 'V':  compute the right generalized eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SENSE
 | 
						|
*> \verbatim
 | 
						|
*>          SENSE is CHARACTER*1
 | 
						|
*>          Determines which reciprocal condition numbers are computed.
 | 
						|
*>          = 'N': none are computed;
 | 
						|
*>          = 'E': computed for eigenvalues only;
 | 
						|
*>          = 'V': computed for eigenvectors only;
 | 
						|
*>          = 'B': computed for eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A, B, VL, and VR.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA, N)
 | 
						|
*>          On entry, the matrix A in the pair (A,B).
 | 
						|
*>          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
 | 
						|
*>          or both, then A contains the first part of the real Schur
 | 
						|
*>          form of the "balanced" versions of the input A and B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB, N)
 | 
						|
*>          On entry, the matrix B in the pair (A,B).
 | 
						|
*>          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
 | 
						|
*>          or both, then B contains the second part of the real Schur
 | 
						|
*>          form of the "balanced" versions of the input A and B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAR
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAR is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAI
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAI is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL array, dimension (N)
 | 
						|
*>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
 | 
						|
*>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
 | 
						|
*>          the j-th eigenvalue is real; if positive, then the j-th and
 | 
						|
*>          (j+1)-st eigenvalues are a complex conjugate pair, with
 | 
						|
*>          ALPHAI(j+1) negative.
 | 
						|
*>
 | 
						|
*>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
 | 
						|
*>          may easily over- or underflow, and BETA(j) may even be zero.
 | 
						|
*>          Thus, the user should avoid naively computing the ratio
 | 
						|
*>          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
 | 
						|
*>          than and usually comparable with norm(A) in magnitude, and
 | 
						|
*>          BETA always less than and usually comparable with norm(B).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is REAL array, dimension (LDVL,N)
 | 
						|
*>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
 | 
						|
*>          after another in the columns of VL, in the same order as
 | 
						|
*>          their eigenvalues. If the j-th eigenvalue is real, then
 | 
						|
*>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
 | 
						|
*>          (j+1)-th eigenvalues form a complex conjugate pair, then
 | 
						|
*>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
 | 
						|
*>          Each eigenvector will be scaled so the largest component have
 | 
						|
*>          abs(real part) + abs(imag. part) = 1.
 | 
						|
*>          Not referenced if JOBVL = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the matrix VL. LDVL >= 1, and
 | 
						|
*>          if JOBVL = 'V', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is REAL array, dimension (LDVR,N)
 | 
						|
*>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
 | 
						|
*>          after another in the columns of VR, in the same order as
 | 
						|
*>          their eigenvalues. If the j-th eigenvalue is real, then
 | 
						|
*>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
 | 
						|
*>          (j+1)-th eigenvalues form a complex conjugate pair, then
 | 
						|
*>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
 | 
						|
*>          Each eigenvector will be scaled so the largest component have
 | 
						|
*>          abs(real part) + abs(imag. part) = 1.
 | 
						|
*>          Not referenced if JOBVR = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the matrix VR. LDVR >= 1, and
 | 
						|
*>          if JOBVR = 'V', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>          ILO and IHI are integer values such that on exit
 | 
						|
*>          A(i,j) = 0 and B(i,j) = 0 if i > j and
 | 
						|
*>          j = 1,...,ILO-1 or i = IHI+1,...,N.
 | 
						|
*>          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] LSCALE
 | 
						|
*> \verbatim
 | 
						|
*>          LSCALE is REAL array, dimension (N)
 | 
						|
*>          Details of the permutations and scaling factors applied
 | 
						|
*>          to the left side of A and B.  If PL(j) is the index of the
 | 
						|
*>          row interchanged with row j, and DL(j) is the scaling
 | 
						|
*>          factor applied to row j, then
 | 
						|
*>            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
 | 
						|
*>                      = DL(j)  for j = ILO,...,IHI
 | 
						|
*>                      = PL(j)  for j = IHI+1,...,N.
 | 
						|
*>          The order in which the interchanges are made is N to IHI+1,
 | 
						|
*>          then 1 to ILO-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RSCALE
 | 
						|
*> \verbatim
 | 
						|
*>          RSCALE is REAL array, dimension (N)
 | 
						|
*>          Details of the permutations and scaling factors applied
 | 
						|
*>          to the right side of A and B.  If PR(j) is the index of the
 | 
						|
*>          column interchanged with column j, and DR(j) is the scaling
 | 
						|
*>          factor applied to column j, then
 | 
						|
*>            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
 | 
						|
*>                      = DR(j)  for j = ILO,...,IHI
 | 
						|
*>                      = PR(j)  for j = IHI+1,...,N
 | 
						|
*>          The order in which the interchanges are made is N to IHI+1,
 | 
						|
*>          then 1 to ILO-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ABNRM
 | 
						|
*> \verbatim
 | 
						|
*>          ABNRM is REAL
 | 
						|
*>          The one-norm of the balanced matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BBNRM
 | 
						|
*> \verbatim
 | 
						|
*>          BBNRM is REAL
 | 
						|
*>          The one-norm of the balanced matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCONDE
 | 
						|
*> \verbatim
 | 
						|
*>          RCONDE is REAL array, dimension (N)
 | 
						|
*>          If SENSE = 'E' or 'B', the reciprocal condition numbers of
 | 
						|
*>          the eigenvalues, stored in consecutive elements of the array.
 | 
						|
*>          For a complex conjugate pair of eigenvalues two consecutive
 | 
						|
*>          elements of RCONDE are set to the same value. Thus RCONDE(j),
 | 
						|
*>          RCONDV(j), and the j-th columns of VL and VR all correspond
 | 
						|
*>          to the j-th eigenpair.
 | 
						|
*>          If SENSE = 'N' or 'V', RCONDE is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCONDV
 | 
						|
*> \verbatim
 | 
						|
*>          RCONDV is REAL array, dimension (N)
 | 
						|
*>          If SENSE = 'V' or 'B', the estimated reciprocal condition
 | 
						|
*>          numbers of the eigenvectors, stored in consecutive elements
 | 
						|
*>          of the array. For a complex eigenvector two consecutive
 | 
						|
*>          elements of RCONDV are set to the same value. If the
 | 
						|
*>          eigenvalues cannot be reordered to compute RCONDV(j),
 | 
						|
*>          RCONDV(j) is set to 0; this can only occur when the true
 | 
						|
*>          value would be very small anyway.
 | 
						|
*>          If SENSE = 'N' or 'E', RCONDV is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,2*N).
 | 
						|
*>          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
 | 
						|
*>          LWORK >= max(1,6*N).
 | 
						|
*>          If SENSE = 'E', LWORK >= max(1,10*N).
 | 
						|
*>          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N+6)
 | 
						|
*>          If SENSE = 'E', IWORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BWORK
 | 
						|
*> \verbatim
 | 
						|
*>          BWORK is LOGICAL array, dimension (N)
 | 
						|
*>          If SENSE = 'N', BWORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          = 1,...,N:
 | 
						|
*>                The QZ iteration failed.  No eigenvectors have been
 | 
						|
*>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
 | 
						|
*>                should be correct for j=INFO+1,...,N.
 | 
						|
*>          > N:  =N+1: other than QZ iteration failed in SHGEQZ.
 | 
						|
*>                =N+2: error return from STGEVC.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup ggevx
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Balancing a matrix pair (A,B) includes, first, permuting rows and
 | 
						|
*>  columns to isolate eigenvalues, second, applying diagonal similarity
 | 
						|
*>  transformation to the rows and columns to make the rows and columns
 | 
						|
*>  as close in norm as possible. The computed reciprocal condition
 | 
						|
*>  numbers correspond to the balanced matrix. Permuting rows and columns
 | 
						|
*>  will not change the condition numbers (in exact arithmetic) but
 | 
						|
*>  diagonal scaling will.  For further explanation of balancing, see
 | 
						|
*>  section 4.11.1.2 of LAPACK Users' Guide.
 | 
						|
*>
 | 
						|
*>  An approximate error bound on the chordal distance between the i-th
 | 
						|
*>  computed generalized eigenvalue w and the corresponding exact
 | 
						|
*>  eigenvalue lambda is
 | 
						|
*>
 | 
						|
*>       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
 | 
						|
*>
 | 
						|
*>  An approximate error bound for the angle between the i-th computed
 | 
						|
*>  eigenvector VL(i) or VR(i) is given by
 | 
						|
*>
 | 
						|
*>       EPS * norm(ABNRM, BBNRM) / DIF(i).
 | 
						|
*>
 | 
						|
*>  For further explanation of the reciprocal condition numbers RCONDE
 | 
						|
*>  and RCONDV, see section 4.11 of LAPACK User's Guide.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 | 
						|
     $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
 | 
						|
     $                   IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
 | 
						|
     $                   RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 | 
						|
      INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | 
						|
      REAL               ABNRM, BBNRM
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            BWORK( * )
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
     $                   B( LDB, * ), BETA( * ), LSCALE( * ),
 | 
						|
     $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
 | 
						|
     $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
 | 
						|
     $                   PAIR, WANTSB, WANTSE, WANTSN, WANTSV
 | 
						|
      CHARACTER          CHTEMP
 | 
						|
      INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
 | 
						|
     $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
 | 
						|
     $                   MINWRK, MM
 | 
						|
      REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
 | 
						|
     $                   SMLNUM, TEMP
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      LOGICAL            LDUMMA( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLACPY,
 | 
						|
     $                   SLASCL, SLASET, SORGQR, SORMQR, STGEVC, STGSNA,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               SLAMCH, SLANGE, SROUNDUP_LWORK
 | 
						|
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE, SROUNDUP_LWORK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode the input arguments
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVL, 'N' ) ) THEN
 | 
						|
         IJOBVL = 1
 | 
						|
         ILVL = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
 | 
						|
         IJOBVL = 2
 | 
						|
         ILVL = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVL = -1
 | 
						|
         ILVL = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVR, 'N' ) ) THEN
 | 
						|
         IJOBVR = 1
 | 
						|
         ILVR = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
 | 
						|
         IJOBVR = 2
 | 
						|
         ILVR = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVR = -1
 | 
						|
         ILVR = .FALSE.
 | 
						|
      END IF
 | 
						|
      ILV = ILVL .OR. ILVR
 | 
						|
*
 | 
						|
      NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
 | 
						|
      WANTSN = LSAME( SENSE, 'N' )
 | 
						|
      WANTSE = LSAME( SENSE, 'E' )
 | 
						|
      WANTSV = LSAME( SENSE, 'V' )
 | 
						|
      WANTSB = LSAME( SENSE, 'B' )
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( .NOT.( NOSCL .OR. LSAME( BALANC, 'S' ) .OR.
 | 
						|
     $    LSAME( BALANC, 'B' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( IJOBVL.LE.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( IJOBVR.LE.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
 | 
						|
         INFO = -14
 | 
						|
      ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
 | 
						|
         INFO = -16
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*      (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*       minimal amount of workspace needed at that point in the code,
 | 
						|
*       as well as the preferred amount for good performance.
 | 
						|
*       NB refers to the optimal block size for the immediately
 | 
						|
*       following subroutine, as returned by ILAENV. The workspace is
 | 
						|
*       computed assuming ILO = 1 and IHI = N, the worst case.)
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.EQ.0 ) THEN
 | 
						|
            MINWRK = 1
 | 
						|
            MAXWRK = 1
 | 
						|
         ELSE
 | 
						|
            IF( NOSCL .AND. .NOT.ILV ) THEN
 | 
						|
               MINWRK = 2*N
 | 
						|
            ELSE
 | 
						|
               MINWRK = 6*N
 | 
						|
            END IF
 | 
						|
            IF( WANTSE ) THEN
 | 
						|
               MINWRK = 10*N
 | 
						|
            ELSE IF( WANTSV .OR. WANTSB ) THEN
 | 
						|
               MINWRK = 2*N*( N + 4 ) + 16
 | 
						|
            END IF
 | 
						|
            MAXWRK = MINWRK
 | 
						|
            MAXWRK = MAX( MAXWRK,
 | 
						|
     $                    N + N*ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 ) )
 | 
						|
            MAXWRK = MAX( MAXWRK,
 | 
						|
     $                    N + N*ILAENV( 1, 'SORMQR', ' ', N, 1, N, 0 ) )
 | 
						|
            IF( ILVL ) THEN
 | 
						|
               MAXWRK = MAX( MAXWRK, N +
 | 
						|
     $                       N*ILAENV( 1, 'SORGQR', ' ', N, 1, N, 0 ) )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
 | 
						|
*
 | 
						|
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -26
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGGEVX', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SMLNUM = SLAMCH( 'S' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      SMLNUM = SQRT( SMLNUM ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
 | 
						|
      ILASCL = .FALSE.
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
         ANRMTO = SMLNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
         ANRMTO = BIGNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      END IF
 | 
						|
      IF( ILASCL )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
 | 
						|
*
 | 
						|
*     Scale B if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
 | 
						|
      ILBSCL = .FALSE.
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
         BNRMTO = SMLNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
         BNRMTO = BIGNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      END IF
 | 
						|
      IF( ILBSCL )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
 | 
						|
*
 | 
						|
*     Permute and/or balance the matrix pair (A,B)
 | 
						|
*     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
 | 
						|
*
 | 
						|
      CALL SGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
 | 
						|
     $             WORK, IERR )
 | 
						|
*
 | 
						|
*     Compute ABNRM and BBNRM
 | 
						|
*
 | 
						|
      ABNRM = SLANGE( '1', N, N, A, LDA, WORK( 1 ) )
 | 
						|
      IF( ILASCL ) THEN
 | 
						|
         WORK( 1 ) = ABNRM
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
 | 
						|
     $                IERR )
 | 
						|
         ABNRM = WORK( 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      BBNRM = SLANGE( '1', N, N, B, LDB, WORK( 1 ) )
 | 
						|
      IF( ILBSCL ) THEN
 | 
						|
         WORK( 1 ) = BBNRM
 | 
						|
         CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
 | 
						|
     $                IERR )
 | 
						|
         BBNRM = WORK( 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Reduce B to triangular form (QR decomposition of B)
 | 
						|
*     (Workspace: need N, prefer N*NB )
 | 
						|
*
 | 
						|
      IROWS = IHI + 1 - ILO
 | 
						|
      IF( ILV .OR. .NOT.WANTSN ) THEN
 | 
						|
         ICOLS = N + 1 - ILO
 | 
						|
      ELSE
 | 
						|
         ICOLS = IROWS
 | 
						|
      END IF
 | 
						|
      ITAU = 1
 | 
						|
      IWRK = ITAU + IROWS
 | 
						|
      CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | 
						|
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | 
						|
*
 | 
						|
*     Apply the orthogonal transformation to A
 | 
						|
*     (Workspace: need N, prefer N*NB)
 | 
						|
*
 | 
						|
      CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | 
						|
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
 | 
						|
     $             LWORK+1-IWRK, IERR )
 | 
						|
*
 | 
						|
*     Initialize VL and/or VR
 | 
						|
*     (Workspace: need N, prefer N*NB)
 | 
						|
*
 | 
						|
      IF( ILVL ) THEN
 | 
						|
         CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
 | 
						|
         IF( IROWS.GT.1 ) THEN
 | 
						|
            CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | 
						|
     $                   VL( ILO+1, ILO ), LDVL )
 | 
						|
         END IF
 | 
						|
         CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
 | 
						|
     $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILVR )
 | 
						|
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
 | 
						|
*
 | 
						|
*     Reduce to generalized Hessenberg form
 | 
						|
*     (Workspace: none needed)
 | 
						|
*
 | 
						|
      IF( ILV .OR. .NOT.WANTSN ) THEN
 | 
						|
*
 | 
						|
*        Eigenvectors requested -- work on whole matrix.
 | 
						|
*
 | 
						|
         CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
 | 
						|
     $                LDVL, VR, LDVR, IERR )
 | 
						|
      ELSE
 | 
						|
         CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
 | 
						|
     $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Perform QZ algorithm (Compute eigenvalues, and optionally, the
 | 
						|
*     Schur forms and Schur vectors)
 | 
						|
*     (Workspace: need N)
 | 
						|
*
 | 
						|
      IF( ILV .OR. .NOT.WANTSN ) THEN
 | 
						|
         CHTEMP = 'S'
 | 
						|
      ELSE
 | 
						|
         CHTEMP = 'E'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
 | 
						|
     $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
 | 
						|
     $             LWORK, IERR )
 | 
						|
      IF( IERR.NE.0 ) THEN
 | 
						|
         IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
 | 
						|
            INFO = IERR
 | 
						|
         ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
 | 
						|
            INFO = IERR - N
 | 
						|
         ELSE
 | 
						|
            INFO = N + 1
 | 
						|
         END IF
 | 
						|
         GO TO 130
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute Eigenvectors and estimate condition numbers if desired
 | 
						|
*     (Workspace: STGEVC: need 6*N
 | 
						|
*                 STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
 | 
						|
*                         need N otherwise )
 | 
						|
*
 | 
						|
      IF( ILV .OR. .NOT.WANTSN ) THEN
 | 
						|
         IF( ILV ) THEN
 | 
						|
            IF( ILVL ) THEN
 | 
						|
               IF( ILVR ) THEN
 | 
						|
                  CHTEMP = 'B'
 | 
						|
               ELSE
 | 
						|
                  CHTEMP = 'L'
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               CHTEMP = 'R'
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
 | 
						|
     $                   LDVL, VR, LDVR, N, IN, WORK, IERR )
 | 
						|
            IF( IERR.NE.0 ) THEN
 | 
						|
               INFO = N + 2
 | 
						|
               GO TO 130
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( .NOT.WANTSN ) THEN
 | 
						|
*
 | 
						|
*           compute eigenvectors (STGEVC) and estimate condition
 | 
						|
*           numbers (STGSNA). Note that the definition of the condition
 | 
						|
*           number is not invariant under transformation (u,v) to
 | 
						|
*           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
 | 
						|
*           Schur form (S,T), Q and Z are orthogonal matrices. In order
 | 
						|
*           to avoid using extra 2*N*N workspace, we have to recalculate
 | 
						|
*           eigenvectors and estimate one condition numbers at a time.
 | 
						|
*
 | 
						|
            PAIR = .FALSE.
 | 
						|
            DO 20 I = 1, N
 | 
						|
*
 | 
						|
               IF( PAIR ) THEN
 | 
						|
                  PAIR = .FALSE.
 | 
						|
                  GO TO 20
 | 
						|
               END IF
 | 
						|
               MM = 1
 | 
						|
               IF( I.LT.N ) THEN
 | 
						|
                  IF( A( I+1, I ).NE.ZERO ) THEN
 | 
						|
                     PAIR = .TRUE.
 | 
						|
                     MM = 2
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 10 J = 1, N
 | 
						|
                  BWORK( J ) = .FALSE.
 | 
						|
   10          CONTINUE
 | 
						|
               IF( MM.EQ.1 ) THEN
 | 
						|
                  BWORK( I ) = .TRUE.
 | 
						|
               ELSE IF( MM.EQ.2 ) THEN
 | 
						|
                  BWORK( I ) = .TRUE.
 | 
						|
                  BWORK( I+1 ) = .TRUE.
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IWRK = MM*N + 1
 | 
						|
               IWRK1 = IWRK + MM*N
 | 
						|
*
 | 
						|
*              Compute a pair of left and right eigenvectors.
 | 
						|
*              (compute workspace: need up to 4*N + 6*N)
 | 
						|
*
 | 
						|
               IF( WANTSE .OR. WANTSB ) THEN
 | 
						|
                  CALL STGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
 | 
						|
     $                         WORK( 1 ), N, WORK( IWRK ), N, MM, M,
 | 
						|
     $                         WORK( IWRK1 ), IERR )
 | 
						|
                  IF( IERR.NE.0 ) THEN
 | 
						|
                     INFO = N + 2
 | 
						|
                     GO TO 130
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               CALL STGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
 | 
						|
     $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
 | 
						|
     $                      RCONDV( I ), MM, M, WORK( IWRK1 ),
 | 
						|
     $                      LWORK-IWRK1+1, IWORK, IERR )
 | 
						|
*
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo balancing on VL and VR and normalization
 | 
						|
*     (Workspace: none needed)
 | 
						|
*
 | 
						|
      IF( ILVL ) THEN
 | 
						|
         CALL SGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
 | 
						|
     $                LDVL, IERR )
 | 
						|
*
 | 
						|
         DO 70 JC = 1, N
 | 
						|
            IF( ALPHAI( JC ).LT.ZERO )
 | 
						|
     $         GO TO 70
 | 
						|
            TEMP = ZERO
 | 
						|
            IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | 
						|
               DO 30 JR = 1, N
 | 
						|
                  TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
 | 
						|
   30          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40 JR = 1, N
 | 
						|
                  TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
 | 
						|
     $                   ABS( VL( JR, JC+1 ) ) )
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
            IF( TEMP.LT.SMLNUM )
 | 
						|
     $         GO TO 70
 | 
						|
            TEMP = ONE / TEMP
 | 
						|
            IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | 
						|
               DO 50 JR = 1, N
 | 
						|
                  VL( JR, JC ) = VL( JR, JC )*TEMP
 | 
						|
   50          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 60 JR = 1, N
 | 
						|
                  VL( JR, JC ) = VL( JR, JC )*TEMP
 | 
						|
                  VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
 | 
						|
   60          CONTINUE
 | 
						|
            END IF
 | 
						|
   70    CONTINUE
 | 
						|
      END IF
 | 
						|
      IF( ILVR ) THEN
 | 
						|
         CALL SGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
 | 
						|
     $                LDVR, IERR )
 | 
						|
         DO 120 JC = 1, N
 | 
						|
            IF( ALPHAI( JC ).LT.ZERO )
 | 
						|
     $         GO TO 120
 | 
						|
            TEMP = ZERO
 | 
						|
            IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | 
						|
               DO 80 JR = 1, N
 | 
						|
                  TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
 | 
						|
   80          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 90 JR = 1, N
 | 
						|
                  TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
 | 
						|
     $                   ABS( VR( JR, JC+1 ) ) )
 | 
						|
   90          CONTINUE
 | 
						|
            END IF
 | 
						|
            IF( TEMP.LT.SMLNUM )
 | 
						|
     $         GO TO 120
 | 
						|
            TEMP = ONE / TEMP
 | 
						|
            IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | 
						|
               DO 100 JR = 1, N
 | 
						|
                  VR( JR, JC ) = VR( JR, JC )*TEMP
 | 
						|
  100          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 110 JR = 1, N
 | 
						|
                  VR( JR, JC ) = VR( JR, JC )*TEMP
 | 
						|
                  VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
 | 
						|
  110          CONTINUE
 | 
						|
            END IF
 | 
						|
  120    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling if necessary
 | 
						|
*
 | 
						|
  130 CONTINUE
 | 
						|
*
 | 
						|
      IF( ILASCL ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILBSCL ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGGEVX
 | 
						|
*
 | 
						|
      END
 |