570 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			570 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSTEQR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSTEQR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          COMPZ
 | 
						|
*       INTEGER            INFO, LDZ, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
 | 
						|
*> symmetric tridiagonal matrix using the implicit QL or QR method.
 | 
						|
*> The eigenvectors of a full or band symmetric matrix can also be found
 | 
						|
*> if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
 | 
						|
*> tridiagonal form.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] COMPZ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only.
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors of the original
 | 
						|
*>                  symmetric matrix.  On entry, Z must contain the
 | 
						|
*>                  orthogonal matrix used to reduce the original matrix
 | 
						|
*>                  to tridiagonal form.
 | 
						|
*>          = 'I':  Compute eigenvalues and eigenvectors of the
 | 
						|
*>                  tridiagonal matrix.  Z is initialized to the identity
 | 
						|
*>                  matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On entry, the diagonal elements of the tridiagonal matrix.
 | 
						|
*>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | 
						|
*>          matrix.
 | 
						|
*>          On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
 | 
						|
*>          On entry, if  COMPZ = 'V', then Z contains the orthogonal
 | 
						|
*>          matrix used in the reduction to tridiagonal form.
 | 
						|
*>          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
 | 
						|
*>          orthonormal eigenvectors of the original symmetric matrix,
 | 
						|
*>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
 | 
						|
*>          of the symmetric tridiagonal matrix.
 | 
						|
*>          If COMPZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          eigenvectors are desired, then  LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2))
 | 
						|
*>          If COMPZ = 'N', then WORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  the algorithm has failed to find all the eigenvalues in
 | 
						|
*>                a total of 30*N iterations; if INFO = i, then i
 | 
						|
*>                elements of E have not converged to zero; on exit, D
 | 
						|
*>                and E contain the elements of a symmetric tridiagonal
 | 
						|
*>                matrix which is orthogonally similar to the original
 | 
						|
*>                matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          COMPZ
 | 
						|
      INTEGER            INFO, LDZ, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | 
						|
     $                   THREE = 3.0D0 )
 | 
						|
      INTEGER            MAXIT
 | 
						|
      PARAMETER          ( MAXIT = 30 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
 | 
						|
     $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
 | 
						|
     $                   NM1, NMAXIT
 | 
						|
      DOUBLE PRECISION   ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
 | 
						|
     $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
 | 
						|
      EXTERNAL           LSAME, DLAMCH, DLANST, DLAPY2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR,
 | 
						|
     $                   DLASRT, DSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( LSAME( COMPZ, 'N' ) ) THEN
 | 
						|
         ICOMPZ = 0
 | 
						|
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | 
						|
         ICOMPZ = 1
 | 
						|
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | 
						|
         ICOMPZ = 2
 | 
						|
      ELSE
 | 
						|
         ICOMPZ = -1
 | 
						|
      END IF
 | 
						|
      IF( ICOMPZ.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
 | 
						|
     $         N ) ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSTEQR', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( ICOMPZ.EQ.2 )
 | 
						|
     $      Z( 1, 1 ) = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine the unit roundoff and over/underflow thresholds.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'E' )
 | 
						|
      EPS2 = EPS**2
 | 
						|
      SAFMIN = DLAMCH( 'S' )
 | 
						|
      SAFMAX = ONE / SAFMIN
 | 
						|
      SSFMAX = SQRT( SAFMAX ) / THREE
 | 
						|
      SSFMIN = SQRT( SAFMIN ) / EPS2
 | 
						|
*
 | 
						|
*     Compute the eigenvalues and eigenvectors of the tridiagonal
 | 
						|
*     matrix.
 | 
						|
*
 | 
						|
      IF( ICOMPZ.EQ.2 )
 | 
						|
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
 | 
						|
*
 | 
						|
      NMAXIT = N*MAXIT
 | 
						|
      JTOT = 0
 | 
						|
*
 | 
						|
*     Determine where the matrix splits and choose QL or QR iteration
 | 
						|
*     for each block, according to whether top or bottom diagonal
 | 
						|
*     element is smaller.
 | 
						|
*
 | 
						|
      L1 = 1
 | 
						|
      NM1 = N - 1
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      IF( L1.GT.N )
 | 
						|
     $   GO TO 160
 | 
						|
      IF( L1.GT.1 )
 | 
						|
     $   E( L1-1 ) = ZERO
 | 
						|
      IF( L1.LE.NM1 ) THEN
 | 
						|
         DO 20 M = L1, NM1
 | 
						|
            TST = ABS( E( M ) )
 | 
						|
            IF( TST.EQ.ZERO )
 | 
						|
     $         GO TO 30
 | 
						|
            IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
 | 
						|
     $          1 ) ) ) )*EPS ) THEN
 | 
						|
               E( M ) = ZERO
 | 
						|
               GO TO 30
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
      M = N
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      L = L1
 | 
						|
      LSV = L
 | 
						|
      LEND = M
 | 
						|
      LENDSV = LEND
 | 
						|
      L1 = M + 1
 | 
						|
      IF( LEND.EQ.L )
 | 
						|
     $   GO TO 10
 | 
						|
*
 | 
						|
*     Scale submatrix in rows and columns L to LEND
 | 
						|
*
 | 
						|
      ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) )
 | 
						|
      ISCALE = 0
 | 
						|
      IF( ANORM.EQ.ZERO )
 | 
						|
     $   GO TO 10
 | 
						|
      IF( ANORM.GT.SSFMAX ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
 | 
						|
     $                INFO )
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
 | 
						|
     $                INFO )
 | 
						|
      ELSE IF( ANORM.LT.SSFMIN ) THEN
 | 
						|
         ISCALE = 2
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
 | 
						|
     $                INFO )
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Choose between QL and QR iteration
 | 
						|
*
 | 
						|
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
 | 
						|
         LEND = LSV
 | 
						|
         L = LENDSV
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LEND.GT.L ) THEN
 | 
						|
*
 | 
						|
*        QL Iteration
 | 
						|
*
 | 
						|
*        Look for small subdiagonal element.
 | 
						|
*
 | 
						|
   40    CONTINUE
 | 
						|
         IF( L.NE.LEND ) THEN
 | 
						|
            LENDM1 = LEND - 1
 | 
						|
            DO 50 M = L, LENDM1
 | 
						|
               TST = ABS( E( M ) )**2
 | 
						|
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
 | 
						|
     $             SAFMIN )GO TO 60
 | 
						|
   50       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         M = LEND
 | 
						|
*
 | 
						|
   60    CONTINUE
 | 
						|
         IF( M.LT.LEND )
 | 
						|
     $      E( M ) = ZERO
 | 
						|
         P = D( L )
 | 
						|
         IF( M.EQ.L )
 | 
						|
     $      GO TO 80
 | 
						|
*
 | 
						|
*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
 | 
						|
*        to compute its eigensystem.
 | 
						|
*
 | 
						|
         IF( M.EQ.L+1 ) THEN
 | 
						|
            IF( ICOMPZ.GT.0 ) THEN
 | 
						|
               CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
 | 
						|
               WORK( L ) = C
 | 
						|
               WORK( N-1+L ) = S
 | 
						|
               CALL DLASR( 'R', 'V', 'B', N, 2, WORK( L ),
 | 
						|
     $                     WORK( N-1+L ), Z( 1, L ), LDZ )
 | 
						|
            ELSE
 | 
						|
               CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
 | 
						|
            END IF
 | 
						|
            D( L ) = RT1
 | 
						|
            D( L+1 ) = RT2
 | 
						|
            E( L ) = ZERO
 | 
						|
            L = L + 2
 | 
						|
            IF( L.LE.LEND )
 | 
						|
     $         GO TO 40
 | 
						|
            GO TO 140
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( JTOT.EQ.NMAXIT )
 | 
						|
     $      GO TO 140
 | 
						|
         JTOT = JTOT + 1
 | 
						|
*
 | 
						|
*        Form shift.
 | 
						|
*
 | 
						|
         G = ( D( L+1 )-P ) / ( TWO*E( L ) )
 | 
						|
         R = DLAPY2( G, ONE )
 | 
						|
         G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
 | 
						|
*
 | 
						|
         S = ONE
 | 
						|
         C = ONE
 | 
						|
         P = ZERO
 | 
						|
*
 | 
						|
*        Inner loop
 | 
						|
*
 | 
						|
         MM1 = M - 1
 | 
						|
         DO 70 I = MM1, L, -1
 | 
						|
            F = S*E( I )
 | 
						|
            B = C*E( I )
 | 
						|
            CALL DLARTG( G, F, C, S, R )
 | 
						|
            IF( I.NE.M-1 )
 | 
						|
     $         E( I+1 ) = R
 | 
						|
            G = D( I+1 ) - P
 | 
						|
            R = ( D( I )-G )*S + TWO*C*B
 | 
						|
            P = S*R
 | 
						|
            D( I+1 ) = G + P
 | 
						|
            G = C*R - B
 | 
						|
*
 | 
						|
*           If eigenvectors are desired, then save rotations.
 | 
						|
*
 | 
						|
            IF( ICOMPZ.GT.0 ) THEN
 | 
						|
               WORK( I ) = C
 | 
						|
               WORK( N-1+I ) = -S
 | 
						|
            END IF
 | 
						|
*
 | 
						|
   70    CONTINUE
 | 
						|
*
 | 
						|
*        If eigenvectors are desired, then apply saved rotations.
 | 
						|
*
 | 
						|
         IF( ICOMPZ.GT.0 ) THEN
 | 
						|
            MM = M - L + 1
 | 
						|
            CALL DLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
 | 
						|
     $                  Z( 1, L ), LDZ )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         D( L ) = D( L ) - P
 | 
						|
         E( L ) = G
 | 
						|
         GO TO 40
 | 
						|
*
 | 
						|
*        Eigenvalue found.
 | 
						|
*
 | 
						|
   80    CONTINUE
 | 
						|
         D( L ) = P
 | 
						|
*
 | 
						|
         L = L + 1
 | 
						|
         IF( L.LE.LEND )
 | 
						|
     $      GO TO 40
 | 
						|
         GO TO 140
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        QR Iteration
 | 
						|
*
 | 
						|
*        Look for small superdiagonal element.
 | 
						|
*
 | 
						|
   90    CONTINUE
 | 
						|
         IF( L.NE.LEND ) THEN
 | 
						|
            LENDP1 = LEND + 1
 | 
						|
            DO 100 M = L, LENDP1, -1
 | 
						|
               TST = ABS( E( M-1 ) )**2
 | 
						|
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
 | 
						|
     $             SAFMIN )GO TO 110
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         M = LEND
 | 
						|
*
 | 
						|
  110    CONTINUE
 | 
						|
         IF( M.GT.LEND )
 | 
						|
     $      E( M-1 ) = ZERO
 | 
						|
         P = D( L )
 | 
						|
         IF( M.EQ.L )
 | 
						|
     $      GO TO 130
 | 
						|
*
 | 
						|
*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
 | 
						|
*        to compute its eigensystem.
 | 
						|
*
 | 
						|
         IF( M.EQ.L-1 ) THEN
 | 
						|
            IF( ICOMPZ.GT.0 ) THEN
 | 
						|
               CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
 | 
						|
               WORK( M ) = C
 | 
						|
               WORK( N-1+M ) = S
 | 
						|
               CALL DLASR( 'R', 'V', 'F', N, 2, WORK( M ),
 | 
						|
     $                     WORK( N-1+M ), Z( 1, L-1 ), LDZ )
 | 
						|
            ELSE
 | 
						|
               CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
 | 
						|
            END IF
 | 
						|
            D( L-1 ) = RT1
 | 
						|
            D( L ) = RT2
 | 
						|
            E( L-1 ) = ZERO
 | 
						|
            L = L - 2
 | 
						|
            IF( L.GE.LEND )
 | 
						|
     $         GO TO 90
 | 
						|
            GO TO 140
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( JTOT.EQ.NMAXIT )
 | 
						|
     $      GO TO 140
 | 
						|
         JTOT = JTOT + 1
 | 
						|
*
 | 
						|
*        Form shift.
 | 
						|
*
 | 
						|
         G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
 | 
						|
         R = DLAPY2( G, ONE )
 | 
						|
         G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
 | 
						|
*
 | 
						|
         S = ONE
 | 
						|
         C = ONE
 | 
						|
         P = ZERO
 | 
						|
*
 | 
						|
*        Inner loop
 | 
						|
*
 | 
						|
         LM1 = L - 1
 | 
						|
         DO 120 I = M, LM1
 | 
						|
            F = S*E( I )
 | 
						|
            B = C*E( I )
 | 
						|
            CALL DLARTG( G, F, C, S, R )
 | 
						|
            IF( I.NE.M )
 | 
						|
     $         E( I-1 ) = R
 | 
						|
            G = D( I ) - P
 | 
						|
            R = ( D( I+1 )-G )*S + TWO*C*B
 | 
						|
            P = S*R
 | 
						|
            D( I ) = G + P
 | 
						|
            G = C*R - B
 | 
						|
*
 | 
						|
*           If eigenvectors are desired, then save rotations.
 | 
						|
*
 | 
						|
            IF( ICOMPZ.GT.0 ) THEN
 | 
						|
               WORK( I ) = C
 | 
						|
               WORK( N-1+I ) = S
 | 
						|
            END IF
 | 
						|
*
 | 
						|
  120    CONTINUE
 | 
						|
*
 | 
						|
*        If eigenvectors are desired, then apply saved rotations.
 | 
						|
*
 | 
						|
         IF( ICOMPZ.GT.0 ) THEN
 | 
						|
            MM = L - M + 1
 | 
						|
            CALL DLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
 | 
						|
     $                  Z( 1, M ), LDZ )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         D( L ) = D( L ) - P
 | 
						|
         E( LM1 ) = G
 | 
						|
         GO TO 90
 | 
						|
*
 | 
						|
*        Eigenvalue found.
 | 
						|
*
 | 
						|
  130    CONTINUE
 | 
						|
         D( L ) = P
 | 
						|
*
 | 
						|
         L = L - 1
 | 
						|
         IF( L.GE.LEND )
 | 
						|
     $      GO TO 90
 | 
						|
         GO TO 140
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling if necessary
 | 
						|
*
 | 
						|
  140 CONTINUE
 | 
						|
      IF( ISCALE.EQ.1 ) THEN
 | 
						|
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
 | 
						|
     $                D( LSV ), N, INFO )
 | 
						|
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
 | 
						|
     $                N, INFO )
 | 
						|
      ELSE IF( ISCALE.EQ.2 ) THEN
 | 
						|
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
 | 
						|
     $                D( LSV ), N, INFO )
 | 
						|
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
 | 
						|
     $                N, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check for no convergence to an eigenvalue after a total
 | 
						|
*     of N*MAXIT iterations.
 | 
						|
*
 | 
						|
      IF( JTOT.LT.NMAXIT )
 | 
						|
     $   GO TO 10
 | 
						|
      DO 150 I = 1, N - 1
 | 
						|
         IF( E( I ).NE.ZERO )
 | 
						|
     $      INFO = INFO + 1
 | 
						|
  150 CONTINUE
 | 
						|
      GO TO 190
 | 
						|
*
 | 
						|
*     Order eigenvalues and eigenvectors.
 | 
						|
*
 | 
						|
  160 CONTINUE
 | 
						|
      IF( ICOMPZ.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Use Quick Sort
 | 
						|
*
 | 
						|
         CALL DLASRT( 'I', N, D, INFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use Selection Sort to minimize swaps of eigenvectors
 | 
						|
*
 | 
						|
         DO 180 II = 2, N
 | 
						|
            I = II - 1
 | 
						|
            K = I
 | 
						|
            P = D( I )
 | 
						|
            DO 170 J = II, N
 | 
						|
               IF( D( J ).LT.P ) THEN
 | 
						|
                  K = J
 | 
						|
                  P = D( J )
 | 
						|
               END IF
 | 
						|
  170       CONTINUE
 | 
						|
            IF( K.NE.I ) THEN
 | 
						|
               D( K ) = D( I )
 | 
						|
               D( I ) = P
 | 
						|
               CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
 | 
						|
            END IF
 | 
						|
  180    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
  190 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSTEQR
 | 
						|
*
 | 
						|
      END
 |