614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSPTRF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSPTRF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       DOUBLE PRECISION   AP( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSPTRF computes the factorization of a real symmetric matrix A stored
 | 
						|
*> in packed format using the Bunch-Kaufman diagonal pivoting method:
 | 
						|
*>
 | 
						|
*>    A = U*D*U**T  or  A = L*D*L**T
 | 
						|
*>
 | 
						|
*> where U (or L) is a product of permutation and unit upper (lower)
 | 
						|
*> triangular matrices, and D is symmetric and block diagonal with
 | 
						|
*> 1-by-1 and 2-by-2 diagonal blocks.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          A, packed columnwise in a linear array.  The j-th column of A
 | 
						|
*>          is stored in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>
 | 
						|
*>          On exit, the block diagonal matrix D and the multipliers used
 | 
						|
*>          to obtain the factor U or L, stored as a packed triangular
 | 
						|
*>          matrix overwriting A (see below for further details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the interchanges and the block structure of D.
 | 
						|
*>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 | 
						|
*>          interchanged and D(k,k) is a 1-by-1 diagonal block.
 | 
						|
*>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
 | 
						|
*>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
 | 
						|
*>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
 | 
						|
*>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
 | 
						|
*>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
 | 
						|
*>               has been completed, but the block diagonal matrix D is
 | 
						|
*>               exactly singular, and division by zero will occur if it
 | 
						|
*>               is used to solve a system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  If UPLO = 'U', then A = U*D*U**T, where
 | 
						|
*>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
 | 
						|
*>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
 | 
						|
*>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | 
						|
*>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | 
						|
*>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
 | 
						|
*>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | 
						|
*>
 | 
						|
*>             (   I    v    0   )   k-s
 | 
						|
*>     U(k) =  (   0    I    0   )   s
 | 
						|
*>             (   0    0    I   )   n-k
 | 
						|
*>                k-s   s   n-k
 | 
						|
*>
 | 
						|
*>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
 | 
						|
*>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
 | 
						|
*>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
 | 
						|
*>
 | 
						|
*>  If UPLO = 'L', then A = L*D*L**T, where
 | 
						|
*>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 | 
						|
*>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
 | 
						|
*>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | 
						|
*>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | 
						|
*>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
 | 
						|
*>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | 
						|
*>
 | 
						|
*>             (   I    0     0   )  k-1
 | 
						|
*>     L(k) =  (   0    I     0   )  s
 | 
						|
*>             (   0    v     I   )  n-k-s+1
 | 
						|
*>                k-1   s  n-k-s+1
 | 
						|
*>
 | 
						|
*>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
 | 
						|
*>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
 | 
						|
*>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>  J. Lewis, Boeing Computer Services Company
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      DOUBLE PRECISION   AP( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      DOUBLE PRECISION   EIGHT, SEVTEN
 | 
						|
      PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
 | 
						|
     $                   KSTEP, KX, NPP
 | 
						|
      DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
 | 
						|
     $                   ROWMAX, T, WK, WKM1, WKP1
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      EXTERNAL           LSAME, IDAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DSCAL, DSPR, DSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSPTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize ALPHA for use in choosing pivot block size.
 | 
						|
*
 | 
						|
      ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Factorize A as U*D*U**T using the upper triangle of A
 | 
						|
*
 | 
						|
*        K is the main loop index, decreasing from N to 1 in steps of
 | 
						|
*        1 or 2
 | 
						|
*
 | 
						|
         K = N
 | 
						|
         KC = ( N-1 )*N / 2 + 1
 | 
						|
   10    CONTINUE
 | 
						|
         KNC = KC
 | 
						|
*
 | 
						|
*        If K < 1, exit from loop
 | 
						|
*
 | 
						|
         IF( K.LT.1 )
 | 
						|
     $      GO TO 110
 | 
						|
         KSTEP = 1
 | 
						|
*
 | 
						|
*        Determine rows and columns to be interchanged and whether
 | 
						|
*        a 1-by-1 or 2-by-2 pivot block will be used
 | 
						|
*
 | 
						|
         ABSAKK = ABS( AP( KC+K-1 ) )
 | 
						|
*
 | 
						|
*        IMAX is the row-index of the largest off-diagonal element in
 | 
						|
*        column K, and COLMAX is its absolute value
 | 
						|
*
 | 
						|
         IF( K.GT.1 ) THEN
 | 
						|
            IMAX = IDAMAX( K-1, AP( KC ), 1 )
 | 
						|
            COLMAX = ABS( AP( KC+IMAX-1 ) )
 | 
						|
         ELSE
 | 
						|
            COLMAX = ZERO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Column K is zero: set INFO and continue
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 )
 | 
						|
     $         INFO = K
 | 
						|
            KP = K
 | 
						|
         ELSE
 | 
						|
            IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
 | 
						|
*
 | 
						|
*              no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
               KP = K
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               ROWMAX = ZERO
 | 
						|
               JMAX = IMAX
 | 
						|
               KX = IMAX*( IMAX+1 ) / 2 + IMAX
 | 
						|
               DO 20 J = IMAX + 1, K
 | 
						|
                  IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
 | 
						|
                     ROWMAX = ABS( AP( KX ) )
 | 
						|
                     JMAX = J
 | 
						|
                  END IF
 | 
						|
                  KX = KX + J
 | 
						|
   20          CONTINUE
 | 
						|
               KPC = ( IMAX-1 )*IMAX / 2 + 1
 | 
						|
               IF( IMAX.GT.1 ) THEN
 | 
						|
                  JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 )
 | 
						|
                  ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
 | 
						|
*
 | 
						|
*                 no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
                  KP = K
 | 
						|
               ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
 | 
						|
*
 | 
						|
*                 interchange rows and columns K and IMAX, use 1-by-1
 | 
						|
*                 pivot block
 | 
						|
*
 | 
						|
                  KP = IMAX
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 interchange rows and columns K-1 and IMAX, use 2-by-2
 | 
						|
*                 pivot block
 | 
						|
*
 | 
						|
                  KP = IMAX
 | 
						|
                  KSTEP = 2
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            KK = K - KSTEP + 1
 | 
						|
            IF( KSTEP.EQ.2 )
 | 
						|
     $         KNC = KNC - K + 1
 | 
						|
            IF( KP.NE.KK ) THEN
 | 
						|
*
 | 
						|
*              Interchange rows and columns KK and KP in the leading
 | 
						|
*              submatrix A(1:k,1:k)
 | 
						|
*
 | 
						|
               CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
 | 
						|
               KX = KPC + KP - 1
 | 
						|
               DO 30 J = KP + 1, KK - 1
 | 
						|
                  KX = KX + J - 1
 | 
						|
                  T = AP( KNC+J-1 )
 | 
						|
                  AP( KNC+J-1 ) = AP( KX )
 | 
						|
                  AP( KX ) = T
 | 
						|
   30          CONTINUE
 | 
						|
               T = AP( KNC+KK-1 )
 | 
						|
               AP( KNC+KK-1 ) = AP( KPC+KP-1 )
 | 
						|
               AP( KPC+KP-1 ) = T
 | 
						|
               IF( KSTEP.EQ.2 ) THEN
 | 
						|
                  T = AP( KC+K-2 )
 | 
						|
                  AP( KC+K-2 ) = AP( KC+KP-1 )
 | 
						|
                  AP( KC+KP-1 ) = T
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Update the leading submatrix
 | 
						|
*
 | 
						|
            IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              1-by-1 pivot block D(k): column k now holds
 | 
						|
*
 | 
						|
*              W(k) = U(k)*D(k)
 | 
						|
*
 | 
						|
*              where U(k) is the k-th column of U
 | 
						|
*
 | 
						|
*              Perform a rank-1 update of A(1:k-1,1:k-1) as
 | 
						|
*
 | 
						|
*              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
 | 
						|
*
 | 
						|
               R1 = ONE / AP( KC+K-1 )
 | 
						|
               CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
 | 
						|
*
 | 
						|
*              Store U(k) in column k
 | 
						|
*
 | 
						|
               CALL DSCAL( K-1, R1, AP( KC ), 1 )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2-by-2 pivot block D(k): columns k and k-1 now hold
 | 
						|
*
 | 
						|
*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
 | 
						|
*
 | 
						|
*              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | 
						|
*              of U
 | 
						|
*
 | 
						|
*              Perform a rank-2 update of A(1:k-2,1:k-2) as
 | 
						|
*
 | 
						|
*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
 | 
						|
*                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
 | 
						|
*
 | 
						|
               IF( K.GT.2 ) THEN
 | 
						|
*
 | 
						|
                  D12 = AP( K-1+( K-1 )*K / 2 )
 | 
						|
                  D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
 | 
						|
                  D11 = AP( K+( K-1 )*K / 2 ) / D12
 | 
						|
                  T = ONE / ( D11*D22-ONE )
 | 
						|
                  D12 = T / D12
 | 
						|
*
 | 
						|
                  DO 50 J = K - 2, 1, -1
 | 
						|
                     WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
 | 
						|
     $                      AP( J+( K-1 )*K / 2 ) )
 | 
						|
                     WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
 | 
						|
     $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
 | 
						|
                     DO 40 I = J, 1, -1
 | 
						|
                        AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
 | 
						|
     $                     AP( I+( K-1 )*K / 2 )*WK -
 | 
						|
     $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
 | 
						|
   40                CONTINUE
 | 
						|
                     AP( J+( K-1 )*K / 2 ) = WK
 | 
						|
                     AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
 | 
						|
   50             CONTINUE
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Store details of the interchanges in IPIV
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
            IPIV( K ) = KP
 | 
						|
         ELSE
 | 
						|
            IPIV( K ) = -KP
 | 
						|
            IPIV( K-1 ) = -KP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Decrease K and return to the start of the main loop
 | 
						|
*
 | 
						|
         K = K - KSTEP
 | 
						|
         KC = KNC - K
 | 
						|
         GO TO 10
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Factorize A as L*D*L**T using the lower triangle of A
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
         KC = 1
 | 
						|
         NPP = N*( N+1 ) / 2
 | 
						|
   60    CONTINUE
 | 
						|
         KNC = KC
 | 
						|
*
 | 
						|
*        If K > N, exit from loop
 | 
						|
*
 | 
						|
         IF( K.GT.N )
 | 
						|
     $      GO TO 110
 | 
						|
         KSTEP = 1
 | 
						|
*
 | 
						|
*        Determine rows and columns to be interchanged and whether
 | 
						|
*        a 1-by-1 or 2-by-2 pivot block will be used
 | 
						|
*
 | 
						|
         ABSAKK = ABS( AP( KC ) )
 | 
						|
*
 | 
						|
*        IMAX is the row-index of the largest off-diagonal element in
 | 
						|
*        column K, and COLMAX is its absolute value
 | 
						|
*
 | 
						|
         IF( K.LT.N ) THEN
 | 
						|
            IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
 | 
						|
            COLMAX = ABS( AP( KC+IMAX-K ) )
 | 
						|
         ELSE
 | 
						|
            COLMAX = ZERO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Column K is zero: set INFO and continue
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 )
 | 
						|
     $         INFO = K
 | 
						|
            KP = K
 | 
						|
         ELSE
 | 
						|
            IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
 | 
						|
*
 | 
						|
*              no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
               KP = K
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              JMAX is the column-index of the largest off-diagonal
 | 
						|
*              element in row IMAX, and ROWMAX is its absolute value
 | 
						|
*
 | 
						|
               ROWMAX = ZERO
 | 
						|
               KX = KC + IMAX - K
 | 
						|
               DO 70 J = K, IMAX - 1
 | 
						|
                  IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
 | 
						|
                     ROWMAX = ABS( AP( KX ) )
 | 
						|
                     JMAX = J
 | 
						|
                  END IF
 | 
						|
                  KX = KX + N - J
 | 
						|
   70          CONTINUE
 | 
						|
               KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
 | 
						|
               IF( IMAX.LT.N ) THEN
 | 
						|
                  JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
 | 
						|
                  ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
 | 
						|
*
 | 
						|
*                 no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
                  KP = K
 | 
						|
               ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
 | 
						|
*
 | 
						|
*                 interchange rows and columns K and IMAX, use 1-by-1
 | 
						|
*                 pivot block
 | 
						|
*
 | 
						|
                  KP = IMAX
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 interchange rows and columns K+1 and IMAX, use 2-by-2
 | 
						|
*                 pivot block
 | 
						|
*
 | 
						|
                  KP = IMAX
 | 
						|
                  KSTEP = 2
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            KK = K + KSTEP - 1
 | 
						|
            IF( KSTEP.EQ.2 )
 | 
						|
     $         KNC = KNC + N - K + 1
 | 
						|
            IF( KP.NE.KK ) THEN
 | 
						|
*
 | 
						|
*              Interchange rows and columns KK and KP in the trailing
 | 
						|
*              submatrix A(k:n,k:n)
 | 
						|
*
 | 
						|
               IF( KP.LT.N )
 | 
						|
     $            CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
 | 
						|
     $                        1 )
 | 
						|
               KX = KNC + KP - KK
 | 
						|
               DO 80 J = KK + 1, KP - 1
 | 
						|
                  KX = KX + N - J + 1
 | 
						|
                  T = AP( KNC+J-KK )
 | 
						|
                  AP( KNC+J-KK ) = AP( KX )
 | 
						|
                  AP( KX ) = T
 | 
						|
   80          CONTINUE
 | 
						|
               T = AP( KNC )
 | 
						|
               AP( KNC ) = AP( KPC )
 | 
						|
               AP( KPC ) = T
 | 
						|
               IF( KSTEP.EQ.2 ) THEN
 | 
						|
                  T = AP( KC+1 )
 | 
						|
                  AP( KC+1 ) = AP( KC+KP-K )
 | 
						|
                  AP( KC+KP-K ) = T
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Update the trailing submatrix
 | 
						|
*
 | 
						|
            IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              1-by-1 pivot block D(k): column k now holds
 | 
						|
*
 | 
						|
*              W(k) = L(k)*D(k)
 | 
						|
*
 | 
						|
*              where L(k) is the k-th column of L
 | 
						|
*
 | 
						|
               IF( K.LT.N ) THEN
 | 
						|
*
 | 
						|
*                 Perform a rank-1 update of A(k+1:n,k+1:n) as
 | 
						|
*
 | 
						|
*                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
 | 
						|
*
 | 
						|
                  R1 = ONE / AP( KC )
 | 
						|
                  CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
 | 
						|
     $                       AP( KC+N-K+1 ) )
 | 
						|
*
 | 
						|
*                 Store L(k) in column K
 | 
						|
*
 | 
						|
                  CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2-by-2 pivot block D(k): columns K and K+1 now hold
 | 
						|
*
 | 
						|
*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | 
						|
*
 | 
						|
*              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | 
						|
*              of L
 | 
						|
*
 | 
						|
               IF( K.LT.N-1 ) THEN
 | 
						|
*
 | 
						|
*                 Perform a rank-2 update of A(k+2:n,k+2:n) as
 | 
						|
*
 | 
						|
*                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
 | 
						|
*                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
 | 
						|
*
 | 
						|
*                 where L(k) and L(k+1) are the k-th and (k+1)-th
 | 
						|
*                 columns of L
 | 
						|
*
 | 
						|
                  D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
 | 
						|
                  D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
 | 
						|
                  D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
 | 
						|
                  T = ONE / ( D11*D22-ONE )
 | 
						|
                  D21 = T / D21
 | 
						|
*
 | 
						|
                  DO 100 J = K + 2, N
 | 
						|
                     WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
 | 
						|
     $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
 | 
						|
                     WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
 | 
						|
     $                      AP( J+( K-1 )*( 2*N-K ) / 2 ) )
 | 
						|
*
 | 
						|
                     DO 90 I = J, N
 | 
						|
                        AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
 | 
						|
     $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
 | 
						|
     $                     2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
 | 
						|
   90                CONTINUE
 | 
						|
*
 | 
						|
                     AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
 | 
						|
                     AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
 | 
						|
*
 | 
						|
  100             CONTINUE
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Store details of the interchanges in IPIV
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
            IPIV( K ) = KP
 | 
						|
         ELSE
 | 
						|
            IPIV( K ) = -KP
 | 
						|
            IPIV( K+1 ) = -KP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Increase K and return to the start of the main loop
 | 
						|
*
 | 
						|
         K = K + KSTEP
 | 
						|
         KC = KNC + N - K + 2
 | 
						|
         GO TO 60
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
  110 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSPTRF
 | 
						|
*
 | 
						|
      END
 |