815 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			815 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAQR5 performs a single small-bulge multi-shift QR sweep.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAQR5 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr5.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr5.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr5.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
 | 
						|
*                          H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
 | 
						|
*                          WV, LDWV, NH, WH, LDWH )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
 | 
						|
*      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
 | 
						|
*       LOGICAL            WANTT, WANTZ
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
 | 
						|
*      $                   WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    CLAQR5 called by CLAQR0 performs a
 | 
						|
*>    single small-bulge multi-shift QR sweep.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] WANTT
 | 
						|
*> \verbatim
 | 
						|
*>          WANTT is LOGICAL
 | 
						|
*>             WANTT = .true. if the triangular Schur factor
 | 
						|
*>             is being computed.  WANTT is set to .false. otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTZ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTZ is LOGICAL
 | 
						|
*>             WANTZ = .true. if the unitary Schur factor is being
 | 
						|
*>             computed.  WANTZ is set to .false. otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KACC22
 | 
						|
*> \verbatim
 | 
						|
*>          KACC22 is INTEGER with value 0, 1, or 2.
 | 
						|
*>             Specifies the computation mode of far-from-diagonal
 | 
						|
*>             orthogonal updates.
 | 
						|
*>        = 0: CLAQR5 does not accumulate reflections and does not
 | 
						|
*>             use matrix-matrix multiply to update far-from-diagonal
 | 
						|
*>             matrix entries.
 | 
						|
*>        = 1: CLAQR5 accumulates reflections and uses matrix-matrix
 | 
						|
*>             multiply to update the far-from-diagonal matrix entries.
 | 
						|
*>        = 2: Same as KACC22 = 1. This option used to enable exploiting
 | 
						|
*>             the 2-by-2 structure during matrix multiplications, but
 | 
						|
*>             this is no longer supported.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>             N is the order of the Hessenberg matrix H upon which this
 | 
						|
*>             subroutine operates.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KTOP
 | 
						|
*> \verbatim
 | 
						|
*>          KTOP is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KBOT
 | 
						|
*> \verbatim
 | 
						|
*>          KBOT is INTEGER
 | 
						|
*>             These are the first and last rows and columns of an
 | 
						|
*>             isolated diagonal block upon which the QR sweep is to be
 | 
						|
*>             applied. It is assumed without a check that
 | 
						|
*>                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
 | 
						|
*>             and
 | 
						|
*>                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NSHFTS
 | 
						|
*> \verbatim
 | 
						|
*>          NSHFTS is INTEGER
 | 
						|
*>             NSHFTS gives the number of simultaneous shifts.  NSHFTS
 | 
						|
*>             must be positive and even.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is COMPLEX array, dimension (NSHFTS)
 | 
						|
*>             S contains the shifts of origin that define the multi-
 | 
						|
*>             shift QR sweep.  On output S may be reordered.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is COMPLEX array, dimension (LDH,N)
 | 
						|
*>             On input H contains a Hessenberg matrix.  On output a
 | 
						|
*>             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
 | 
						|
*>             to the isolated diagonal block in rows and columns KTOP
 | 
						|
*>             through KBOT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>             LDH is the leading dimension of H just as declared in the
 | 
						|
*>             calling procedure.  LDH >= MAX(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILOZ
 | 
						|
*> \verbatim
 | 
						|
*>          ILOZ is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHIZ
 | 
						|
*> \verbatim
 | 
						|
*>          IHIZ is INTEGER
 | 
						|
*>             Specify the rows of Z to which transformations must be
 | 
						|
*>             applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX array, dimension (LDZ,IHIZ)
 | 
						|
*>             If WANTZ = .TRUE., then the QR Sweep unitary
 | 
						|
*>             similarity transformation is accumulated into
 | 
						|
*>             Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
 | 
						|
*>             If WANTZ = .FALSE., then Z is unreferenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>             LDA is the leading dimension of Z just as declared in
 | 
						|
*>             the calling procedure. LDZ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX array, dimension (LDV,NSHFTS/2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>             LDV is the leading dimension of V as declared in the
 | 
						|
*>             calling procedure.  LDV >= 3.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX array, dimension (LDU,2*NSHFTS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>             LDU is the leading dimension of U just as declared in the
 | 
						|
*>             in the calling subroutine.  LDU >= 2*NSHFTS.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NV
 | 
						|
*> \verbatim
 | 
						|
*>          NV is INTEGER
 | 
						|
*>             NV is the number of rows in WV agailable for workspace.
 | 
						|
*>             NV >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WV
 | 
						|
*> \verbatim
 | 
						|
*>          WV is COMPLEX array, dimension (LDWV,2*NSHFTS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWV
 | 
						|
*> \verbatim
 | 
						|
*>          LDWV is INTEGER
 | 
						|
*>             LDWV is the leading dimension of WV as declared in the
 | 
						|
*>             in the calling subroutine.  LDWV >= NV.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \param[in] NH
 | 
						|
*> \verbatim
 | 
						|
*>          NH is INTEGER
 | 
						|
*>             NH is the number of columns in array WH available for
 | 
						|
*>             workspace. NH >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WH
 | 
						|
*> \verbatim
 | 
						|
*>          WH is COMPLEX array, dimension (LDWH,NH)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWH
 | 
						|
*> \verbatim
 | 
						|
*>          LDWH is INTEGER
 | 
						|
*>             Leading dimension of WH just as declared in the
 | 
						|
*>             calling procedure.  LDWH >= 2*NSHFTS.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>       Karen Braman and Ralph Byers, Department of Mathematics,
 | 
						|
*>       University of Kansas, USA
 | 
						|
*>
 | 
						|
*>       Lars Karlsson, Daniel Kressner, and Bruno Lang
 | 
						|
*>
 | 
						|
*>       Thijs Steel, Department of Computer science,
 | 
						|
*>       KU Leuven, Belgium
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | 
						|
*>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
 | 
						|
*>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
 | 
						|
*>       929--947, 2002.
 | 
						|
*>
 | 
						|
*>       Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed
 | 
						|
*>       chains of bulges in multishift QR algorithms.
 | 
						|
*>       ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014).
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
 | 
						|
     $                   H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
 | 
						|
     $                   WV, LDWV, NH, WH, LDWH )
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
 | 
						|
     $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
 | 
						|
      LOGICAL            WANTT, WANTZ
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
 | 
						|
     $                   WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ================================================================
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = ( 0.0e0, 0.0e0 ),
 | 
						|
     $                   ONE = ( 1.0e0, 0.0e0 ) )
 | 
						|
      REAL               RZERO, RONE
 | 
						|
      PARAMETER          ( RZERO = 0.0e0, RONE = 1.0e0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            ALPHA, BETA, CDUM, REFSUM, T1, T2, T3
 | 
						|
      REAL               H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
 | 
						|
     $                   SMLNUM, TST1, TST2, ULP
 | 
						|
      INTEGER            I2, I4, INCOL, J, JBOT, JCOL, JLEN,
 | 
						|
     $                   JROW, JTOP, K, K1, KDU, KMS, KRCOL,
 | 
						|
     $                   M, M22, MBOT, MTOP, NBMPS, NDCOL,
 | 
						|
     $                   NS, NU
 | 
						|
      LOGICAL            ACCUM, BMP22
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
*
 | 
						|
      INTRINSIC          ABS, AIMAG, CONJG, MAX, MIN, MOD, REAL
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      COMPLEX            VT( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CLACPY, CLAQR1, CLARFG, CLASET, CTRMM,
 | 
						|
     $                   SLABAD
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     ==== If there are no shifts, then there is nothing to do. ====
 | 
						|
*
 | 
						|
      IF( NSHFTS.LT.2 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     ==== If the active block is empty or 1-by-1, then there
 | 
						|
*     .    is nothing to do. ====
 | 
						|
*
 | 
						|
      IF( KTOP.GE.KBOT )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     ==== NSHFTS is supposed to be even, but if it is odd,
 | 
						|
*     .    then simply reduce it by one.  ====
 | 
						|
*
 | 
						|
      NS = NSHFTS - MOD( NSHFTS, 2 )
 | 
						|
*
 | 
						|
*     ==== Machine constants for deflation ====
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'SAFE MINIMUM' )
 | 
						|
      SAFMAX = RONE / SAFMIN
 | 
						|
      CALL SLABAD( SAFMIN, SAFMAX )
 | 
						|
      ULP = SLAMCH( 'PRECISION' )
 | 
						|
      SMLNUM = SAFMIN*( REAL( N ) / ULP )
 | 
						|
*
 | 
						|
*     ==== Use accumulated reflections to update far-from-diagonal
 | 
						|
*     .    entries ? ====
 | 
						|
*
 | 
						|
      ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
 | 
						|
*
 | 
						|
*     ==== clear trash ====
 | 
						|
*
 | 
						|
      IF( KTOP+2.LE.KBOT )
 | 
						|
     $   H( KTOP+2, KTOP ) = ZERO
 | 
						|
*
 | 
						|
*     ==== NBMPS = number of 2-shift bulges in the chain ====
 | 
						|
*
 | 
						|
      NBMPS = NS / 2
 | 
						|
*
 | 
						|
*     ==== KDU = width of slab ====
 | 
						|
*
 | 
						|
      KDU = 4*NBMPS
 | 
						|
*
 | 
						|
*     ==== Create and chase chains of NBMPS bulges ====
 | 
						|
*
 | 
						|
      DO 180 INCOL = KTOP - 2*NBMPS + 1, KBOT - 2, 2*NBMPS
 | 
						|
*
 | 
						|
*        JTOP = Index from which updates from the right start.
 | 
						|
*
 | 
						|
         IF( ACCUM ) THEN
 | 
						|
            JTOP = MAX( KTOP, INCOL )
 | 
						|
         ELSE IF( WANTT ) THEN
 | 
						|
            JTOP = 1
 | 
						|
         ELSE
 | 
						|
            JTOP = KTOP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         NDCOL = INCOL + KDU
 | 
						|
         IF( ACCUM )
 | 
						|
     $      CALL CLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
 | 
						|
*
 | 
						|
*        ==== Near-the-diagonal bulge chase.  The following loop
 | 
						|
*        .    performs the near-the-diagonal part of a small bulge
 | 
						|
*        .    multi-shift QR sweep.  Each 4*NBMPS column diagonal
 | 
						|
*        .    chunk extends from column INCOL to column NDCOL
 | 
						|
*        .    (including both column INCOL and column NDCOL). The
 | 
						|
*        .    following loop chases a 2*NBMPS+1 column long chain of
 | 
						|
*        .    NBMPS bulges 2*NBMPS columns to the right.  (INCOL
 | 
						|
*        .    may be less than KTOP and and NDCOL may be greater than
 | 
						|
*        .    KBOT indicating phantom columns from which to chase
 | 
						|
*        .    bulges before they are actually introduced or to which
 | 
						|
*        .    to chase bulges beyond column KBOT.)  ====
 | 
						|
*
 | 
						|
         DO 145 KRCOL = INCOL, MIN( INCOL+2*NBMPS-1, KBOT-2 )
 | 
						|
*
 | 
						|
*           ==== Bulges number MTOP to MBOT are active double implicit
 | 
						|
*           .    shift bulges.  There may or may not also be small
 | 
						|
*           .    2-by-2 bulge, if there is room.  The inactive bulges
 | 
						|
*           .    (if any) must wait until the active bulges have moved
 | 
						|
*           .    down the diagonal to make room.  The phantom matrix
 | 
						|
*           .    paradigm described above helps keep track.  ====
 | 
						|
*
 | 
						|
            MTOP = MAX( 1, ( KTOP-KRCOL ) / 2+1 )
 | 
						|
            MBOT = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 2 )
 | 
						|
            M22 = MBOT + 1
 | 
						|
            BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+2*( M22-1 ) ).EQ.
 | 
						|
     $              ( KBOT-2 )
 | 
						|
*
 | 
						|
*           ==== Generate reflections to chase the chain right
 | 
						|
*           .    one column.  (The minimum value of K is KTOP-1.) ====
 | 
						|
*
 | 
						|
            IF ( BMP22 ) THEN
 | 
						|
*
 | 
						|
*              ==== Special case: 2-by-2 reflection at bottom treated
 | 
						|
*              .    separately ====
 | 
						|
*
 | 
						|
               K = KRCOL + 2*( M22-1 )
 | 
						|
               IF( K.EQ.KTOP-1 ) THEN
 | 
						|
                  CALL CLAQR1( 2, H( K+1, K+1 ), LDH, S( 2*M22-1 ),
 | 
						|
     $                         S( 2*M22 ), V( 1, M22 ) )
 | 
						|
                  BETA = V( 1, M22 )
 | 
						|
                  CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
 | 
						|
               ELSE
 | 
						|
                  BETA = H( K+1, K )
 | 
						|
                  V( 2, M22 ) = H( K+2, K )
 | 
						|
                  CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
 | 
						|
                  H( K+1, K ) = BETA
 | 
						|
                  H( K+2, K ) = ZERO
 | 
						|
               END IF
 | 
						|
 | 
						|
*
 | 
						|
*              ==== Perform update from right within 
 | 
						|
*              .    computational window. ====
 | 
						|
*
 | 
						|
               T1 = V( 1, M22 )
 | 
						|
               T2 = T1*CONJG( V( 2, M22 ) )
 | 
						|
               DO 30 J = JTOP, MIN( KBOT, K+3 )
 | 
						|
                  REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 )
 | 
						|
                  H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
 | 
						|
                  H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
 | 
						|
   30          CONTINUE
 | 
						|
*
 | 
						|
*              ==== Perform update from left within 
 | 
						|
*              .    computational window. ====
 | 
						|
*
 | 
						|
               IF( ACCUM ) THEN
 | 
						|
                  JBOT = MIN( NDCOL, KBOT )
 | 
						|
               ELSE IF( WANTT ) THEN
 | 
						|
                  JBOT = N
 | 
						|
               ELSE
 | 
						|
                  JBOT = KBOT
 | 
						|
               END IF
 | 
						|
               T1 = CONJG( V( 1, M22 ) )
 | 
						|
               T2 = T1*V( 2, M22 )
 | 
						|
               DO 40 J = K+1, JBOT
 | 
						|
                  REFSUM = H( K+1, J ) +
 | 
						|
     $                     CONJG( V( 2, M22 ) )*H( K+2, J )
 | 
						|
                  H( K+1, J ) = H( K+1, J ) - REFSUM*T1
 | 
						|
                  H( K+2, J ) = H( K+2, J ) - REFSUM*T2
 | 
						|
   40          CONTINUE
 | 
						|
*
 | 
						|
*              ==== The following convergence test requires that
 | 
						|
*              .    the tradition small-compared-to-nearby-diagonals
 | 
						|
*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
 | 
						|
*              .    criteria both be satisfied.  The latter improves
 | 
						|
*              .    accuracy in some examples. Falling back on an
 | 
						|
*              .    alternate convergence criterion when TST1 or TST2
 | 
						|
*              .    is zero (as done here) is traditional but probably
 | 
						|
*              .    unnecessary. ====
 | 
						|
*
 | 
						|
               IF( K.GE.KTOP) THEN
 | 
						|
                  IF( H( K+1, K ).NE.ZERO ) THEN
 | 
						|
                     TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
 | 
						|
                     IF( TST1.EQ.RZERO ) THEN
 | 
						|
                        IF( K.GE.KTOP+1 )
 | 
						|
     $                     TST1 = TST1 + CABS1( H( K, K-1 ) )
 | 
						|
                        IF( K.GE.KTOP+2 )
 | 
						|
     $                     TST1 = TST1 + CABS1( H( K, K-2 ) )
 | 
						|
                        IF( K.GE.KTOP+3 )
 | 
						|
     $                     TST1 = TST1 + CABS1( H( K, K-3 ) )
 | 
						|
                        IF( K.LE.KBOT-2 )
 | 
						|
     $                     TST1 = TST1 + CABS1( H( K+2, K+1 ) )
 | 
						|
                        IF( K.LE.KBOT-3 )
 | 
						|
     $                     TST1 = TST1 + CABS1( H( K+3, K+1 ) )
 | 
						|
                        IF( K.LE.KBOT-4 )
 | 
						|
     $                     TST1 = TST1 + CABS1( H( K+4, K+1 ) )
 | 
						|
                     END IF
 | 
						|
                     IF( CABS1( H( K+1, K ) )
 | 
						|
     $                   .LE.MAX( SMLNUM, ULP*TST1 ) ) THEN
 | 
						|
                        H12 = MAX( CABS1( H( K+1, K ) ),
 | 
						|
     $                        CABS1( H( K, K+1 ) ) )
 | 
						|
                        H21 = MIN( CABS1( H( K+1, K ) ),
 | 
						|
     $                        CABS1( H( K, K+1 ) ) )
 | 
						|
                        H11 = MAX( CABS1( H( K+1, K+1 ) ),
 | 
						|
     $                        CABS1( H( K, K )-H( K+1, K+1 ) ) )
 | 
						|
                        H22 = MIN( CABS1( H( K+1, K+1 ) ),
 | 
						|
     $                        CABS1( H( K, K )-H( K+1, K+1 ) ) )
 | 
						|
                        SCL = H11 + H12
 | 
						|
                        TST2 = H22*( H11 / SCL )
 | 
						|
*
 | 
						|
                        IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE.
 | 
						|
     $                      MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              ==== Accumulate orthogonal transformations. ====
 | 
						|
*
 | 
						|
               IF( ACCUM ) THEN
 | 
						|
                  KMS = K - INCOL
 | 
						|
                  DO 50 J = MAX( 1, KTOP-INCOL ), KDU
 | 
						|
                     REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
 | 
						|
     $                        V( 2, M22 )*U( J, KMS+2 ) )
 | 
						|
                     U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
 | 
						|
                     U( J, KMS+2 ) = U( J, KMS+2 ) -
 | 
						|
     $                               REFSUM*CONJG( V( 2, M22 ) )
 | 
						|
  50                 CONTINUE
 | 
						|
               ELSE IF( WANTZ ) THEN
 | 
						|
                  DO 60 J = ILOZ, IHIZ
 | 
						|
                     REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
 | 
						|
     $                        Z( J, K+2 ) )
 | 
						|
                     Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
 | 
						|
                     Z( J, K+2 ) = Z( J, K+2 ) -
 | 
						|
     $                             REFSUM*CONJG( V( 2, M22 ) )
 | 
						|
  60              CONTINUE
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           ==== Normal case: Chain of 3-by-3 reflections ====
 | 
						|
*
 | 
						|
            DO 80 M = MBOT, MTOP, -1
 | 
						|
               K = KRCOL + 2*( M-1 )
 | 
						|
               IF( K.EQ.KTOP-1 ) THEN
 | 
						|
                  CALL CLAQR1( 3, H( KTOP, KTOP ), LDH, S( 2*M-1 ),
 | 
						|
     $                         S( 2*M ), V( 1, M ) )
 | 
						|
                  ALPHA = V( 1, M )
 | 
						|
                  CALL CLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 ==== Perform delayed transformation of row below
 | 
						|
*                 .    Mth bulge. Exploit fact that first two elements
 | 
						|
*                 .    of row are actually zero. ====
 | 
						|
*
 | 
						|
                  T1 = V( 1, M )
 | 
						|
                  T2 = T1*CONJG( V( 2, M ) )
 | 
						|
                  T3 = T1*CONJG( V( 3, M ) )
 | 
						|
                  REFSUM = V( 3, M )*H( K+3, K+2 )
 | 
						|
                  H( K+3, K   ) = -REFSUM*T1
 | 
						|
                  H( K+3, K+1 ) = -REFSUM*T2
 | 
						|
                  H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3
 | 
						|
*
 | 
						|
*                 ==== Calculate reflection to move
 | 
						|
*                 .    Mth bulge one step. ====
 | 
						|
*
 | 
						|
                  BETA      = H( K+1, K )
 | 
						|
                  V( 2, M ) = H( K+2, K )
 | 
						|
                  V( 3, M ) = H( K+3, K )
 | 
						|
                  CALL CLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
 | 
						|
*
 | 
						|
*                 ==== A Bulge may collapse because of vigilant
 | 
						|
*                 .    deflation or destructive underflow.  In the
 | 
						|
*                 .    underflow case, try the two-small-subdiagonals
 | 
						|
*                 .    trick to try to reinflate the bulge.  ====
 | 
						|
*
 | 
						|
                  IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
 | 
						|
     $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*                    ==== Typical case: not collapsed (yet). ====
 | 
						|
*
 | 
						|
                     H( K+1, K ) = BETA
 | 
						|
                     H( K+2, K ) = ZERO
 | 
						|
                     H( K+3, K ) = ZERO
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    ==== Atypical case: collapsed.  Attempt to
 | 
						|
*                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
 | 
						|
*                    .    If the fill resulting from the new
 | 
						|
*                    .    reflector is too large, then abandon it.
 | 
						|
*                    .    Otherwise, use the new one. ====
 | 
						|
*
 | 
						|
                     CALL CLAQR1( 3, H( K+1, K+1 ), LDH, S( 2*M-1 ),
 | 
						|
     $                            S( 2*M ), VT )
 | 
						|
                     ALPHA = VT( 1 )
 | 
						|
                     CALL CLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
 | 
						|
                     T1 = CONJG( VT( 1 ) )
 | 
						|
                     T2 = T1*VT( 2 )
 | 
						|
                     T3 = T1*VT( 3 )
 | 
						|
                     REFSUM = H( K+1, K )+CONJG( VT( 2 ) )*H( K+2, K )
 | 
						|
*
 | 
						|
                     IF( CABS1( H( K+2, K )-REFSUM*T2 )+
 | 
						|
     $                   CABS1( REFSUM*T3 ).GT.ULP*
 | 
						|
     $                   ( CABS1( H( K, K ) )+CABS1( H( K+1,
 | 
						|
     $                   K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN
 | 
						|
*
 | 
						|
*                       ==== Starting a new bulge here would
 | 
						|
*                       .    create non-negligible fill.  Use
 | 
						|
*                       .    the old one with trepidation. ====
 | 
						|
*
 | 
						|
                        H( K+1, K ) = BETA
 | 
						|
                        H( K+2, K ) = ZERO
 | 
						|
                        H( K+3, K ) = ZERO
 | 
						|
                     ELSE
 | 
						|
*
 | 
						|
*                       ==== Starting a new bulge here would
 | 
						|
*                       .    create only negligible fill.
 | 
						|
*                       .    Replace the old reflector with
 | 
						|
*                       .    the new one. ====
 | 
						|
*
 | 
						|
                        H( K+1, K ) = H( K+1, K ) - REFSUM*T1
 | 
						|
                        H( K+2, K ) = ZERO
 | 
						|
                        H( K+3, K ) = ZERO
 | 
						|
                        V( 1, M ) = VT( 1 )
 | 
						|
                        V( 2, M ) = VT( 2 )
 | 
						|
                        V( 3, M ) = VT( 3 )
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              ====  Apply reflection from the right and
 | 
						|
*              .     the first column of update from the left.
 | 
						|
*              .     These updates are required for the vigilant
 | 
						|
*              .     deflation check. We still delay most of the
 | 
						|
*              .     updates from the left for efficiency. ====
 | 
						|
*
 | 
						|
               T1 = V( 1, M )
 | 
						|
               T2 = T1*CONJG( V( 2, M ) )
 | 
						|
               T3 = T1*CONJG( V( 3, M ) )
 | 
						|
               DO 70 J = JTOP, MIN( KBOT, K+3 )
 | 
						|
                  REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 )
 | 
						|
     $                     + V( 3, M )*H( J, K+3 )
 | 
						|
                  H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
 | 
						|
                  H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
 | 
						|
                  H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3
 | 
						|
   70          CONTINUE
 | 
						|
*
 | 
						|
*              ==== Perform update from left for subsequent
 | 
						|
*              .    column. ====
 | 
						|
*
 | 
						|
               T1 = CONJG( V( 1, M ) )
 | 
						|
               T2 = T1*V( 2, M )
 | 
						|
               T3 = T1*V( 3, M )
 | 
						|
               REFSUM = H( K+1, K+1 ) + CONJG( V( 2, M ) )*H( K+2, K+1 )
 | 
						|
     $                  + CONJG( V( 3, M ) )*H( K+3, K+1 )
 | 
						|
               H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1
 | 
						|
               H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2
 | 
						|
               H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3
 | 
						|
*
 | 
						|
*              ==== The following convergence test requires that
 | 
						|
*              .    the tradition small-compared-to-nearby-diagonals
 | 
						|
*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
 | 
						|
*              .    criteria both be satisfied.  The latter improves
 | 
						|
*              .    accuracy in some examples. Falling back on an
 | 
						|
*              .    alternate convergence criterion when TST1 or TST2
 | 
						|
*              .    is zero (as done here) is traditional but probably
 | 
						|
*              .    unnecessary. ====
 | 
						|
*
 | 
						|
               IF( K.LT.KTOP)
 | 
						|
     $              CYCLE
 | 
						|
               IF( H( K+1, K ).NE.ZERO ) THEN
 | 
						|
                  TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
 | 
						|
                  IF( TST1.EQ.RZERO ) THEN
 | 
						|
                     IF( K.GE.KTOP+1 )
 | 
						|
     $                  TST1 = TST1 + CABS1( H( K, K-1 ) )
 | 
						|
                     IF( K.GE.KTOP+2 )
 | 
						|
     $                  TST1 = TST1 + CABS1( H( K, K-2 ) )
 | 
						|
                     IF( K.GE.KTOP+3 )
 | 
						|
     $                  TST1 = TST1 + CABS1( H( K, K-3 ) )
 | 
						|
                     IF( K.LE.KBOT-2 )
 | 
						|
     $                  TST1 = TST1 + CABS1( H( K+2, K+1 ) )
 | 
						|
                     IF( K.LE.KBOT-3 )
 | 
						|
     $                  TST1 = TST1 + CABS1( H( K+3, K+1 ) )
 | 
						|
                     IF( K.LE.KBOT-4 )
 | 
						|
     $                  TST1 = TST1 + CABS1( H( K+4, K+1 ) )
 | 
						|
                  END IF
 | 
						|
                  IF( CABS1( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
 | 
						|
     $                 THEN
 | 
						|
                     H12 = MAX( CABS1( H( K+1, K ) ),
 | 
						|
     $                     CABS1( H( K, K+1 ) ) )
 | 
						|
                     H21 = MIN( CABS1( H( K+1, K ) ),
 | 
						|
     $                     CABS1( H( K, K+1 ) ) )
 | 
						|
                     H11 = MAX( CABS1( H( K+1, K+1 ) ),
 | 
						|
     $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
 | 
						|
                     H22 = MIN( CABS1( H( K+1, K+1 ) ),
 | 
						|
     $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
 | 
						|
                     SCL = H11 + H12
 | 
						|
                     TST2 = H22*( H11 / SCL )
 | 
						|
*
 | 
						|
                     IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE.
 | 
						|
     $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
   80       CONTINUE
 | 
						|
*
 | 
						|
*           ==== Multiply H by reflections from the left ====
 | 
						|
*
 | 
						|
            IF( ACCUM ) THEN
 | 
						|
               JBOT = MIN( NDCOL, KBOT )
 | 
						|
            ELSE IF( WANTT ) THEN
 | 
						|
               JBOT = N
 | 
						|
            ELSE
 | 
						|
               JBOT = KBOT
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 100 M = MBOT, MTOP, -1
 | 
						|
               K = KRCOL + 2*( M-1 )
 | 
						|
               T1 = CONJG( V( 1, M ) )
 | 
						|
               T2 = T1*V( 2, M )
 | 
						|
               T3 = T1*V( 3, M )
 | 
						|
               DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
 | 
						|
                  REFSUM = H( K+1, J ) + CONJG( V( 2, M ) )*
 | 
						|
     $                     H( K+2, J ) + CONJG( V( 3, M ) )*H( K+3, J )
 | 
						|
                  H( K+1, J ) = H( K+1, J ) - REFSUM*T1
 | 
						|
                  H( K+2, J ) = H( K+2, J ) - REFSUM*T2
 | 
						|
                  H( K+3, J ) = H( K+3, J ) - REFSUM*T3
 | 
						|
   90          CONTINUE
 | 
						|
  100       CONTINUE
 | 
						|
*
 | 
						|
*           ==== Accumulate orthogonal transformations. ====
 | 
						|
*
 | 
						|
            IF( ACCUM ) THEN
 | 
						|
*
 | 
						|
*              ==== Accumulate U. (If needed, update Z later
 | 
						|
*              .    with an efficient matrix-matrix
 | 
						|
*              .    multiply.) ====
 | 
						|
*
 | 
						|
               DO 120 M = MBOT, MTOP, -1
 | 
						|
                  K = KRCOL + 2*( M-1 )
 | 
						|
                  KMS = K - INCOL
 | 
						|
                  I2 = MAX( 1, KTOP-INCOL )
 | 
						|
                  I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
 | 
						|
                  I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
 | 
						|
                  T1 = V( 1, M )
 | 
						|
                  T2 = T1*CONJG( V( 2, M ) )
 | 
						|
                  T3 = T1*CONJG( V( 3, M ) )
 | 
						|
                  DO 110 J = I2, I4
 | 
						|
                     REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 )
 | 
						|
     $                        + V( 3, M )*U( J, KMS+3 )
 | 
						|
                     U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
 | 
						|
                     U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
 | 
						|
                     U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3
 | 
						|
  110             CONTINUE
 | 
						|
  120          CONTINUE
 | 
						|
            ELSE IF( WANTZ ) THEN
 | 
						|
*
 | 
						|
*              ==== U is not accumulated, so update Z
 | 
						|
*              .    now by multiplying by reflections
 | 
						|
*              .    from the right. ====
 | 
						|
*
 | 
						|
               DO 140 M = MBOT, MTOP, -1
 | 
						|
                  K = KRCOL + 2*( M-1 )
 | 
						|
                  T1 = V( 1, M )
 | 
						|
                  T2 = T1*CONJG( V( 2, M ) )
 | 
						|
                  T3 = T1*CONJG( V( 3, M ) )
 | 
						|
                  DO 130 J = ILOZ, IHIZ
 | 
						|
                     REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 )
 | 
						|
     $                        + V( 3, M )*Z( J, K+3 )
 | 
						|
                     Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
 | 
						|
                     Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
 | 
						|
                     Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3
 | 
						|
  130             CONTINUE
 | 
						|
  140          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           ==== End of near-the-diagonal bulge chase. ====
 | 
						|
*
 | 
						|
  145    CONTINUE
 | 
						|
*
 | 
						|
*        ==== Use U (if accumulated) to update far-from-diagonal
 | 
						|
*        .    entries in H.  If required, use U to update Z as
 | 
						|
*        .    well. ====
 | 
						|
*
 | 
						|
         IF( ACCUM ) THEN
 | 
						|
            IF( WANTT ) THEN
 | 
						|
               JTOP = 1
 | 
						|
               JBOT = N
 | 
						|
            ELSE
 | 
						|
               JTOP = KTOP
 | 
						|
               JBOT = KBOT
 | 
						|
            END IF
 | 
						|
            K1 = MAX( 1, KTOP-INCOL )
 | 
						|
            NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
 | 
						|
*
 | 
						|
*           ==== Horizontal Multiply ====
 | 
						|
*
 | 
						|
            DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
 | 
						|
               JLEN = MIN( NH, JBOT-JCOL+1 )
 | 
						|
               CALL CGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
 | 
						|
     $                     LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
 | 
						|
     $                     LDWH )
 | 
						|
               CALL CLACPY( 'ALL', NU, JLEN, WH, LDWH,
 | 
						|
     $                      H( INCOL+K1, JCOL ), LDH )
 | 
						|
  150       CONTINUE
 | 
						|
*
 | 
						|
*           ==== Vertical multiply ====
 | 
						|
*
 | 
						|
            DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
 | 
						|
               JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
 | 
						|
               CALL CGEMM( 'N', 'N', JLEN, NU, NU, ONE,
 | 
						|
     $                     H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
 | 
						|
     $                     LDU, ZERO, WV, LDWV )
 | 
						|
               CALL CLACPY( 'ALL', JLEN, NU, WV, LDWV,
 | 
						|
     $                      H( JROW, INCOL+K1 ), LDH )
 | 
						|
  160       CONTINUE
 | 
						|
*
 | 
						|
*           ==== Z multiply (also vertical) ====
 | 
						|
*
 | 
						|
            IF( WANTZ ) THEN
 | 
						|
               DO 170 JROW = ILOZ, IHIZ, NV
 | 
						|
                  JLEN = MIN( NV, IHIZ-JROW+1 )
 | 
						|
                  CALL CGEMM( 'N', 'N', JLEN, NU, NU, ONE,
 | 
						|
     $                        Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
 | 
						|
     $                        LDU, ZERO, WV, LDWV )
 | 
						|
                  CALL CLACPY( 'ALL', JLEN, NU, WV, LDWV,
 | 
						|
     $                         Z( JROW, INCOL+K1 ), LDZ )
 | 
						|
  170          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
  180 CONTINUE
 | 
						|
*
 | 
						|
*     ==== End of CLAQR5 ====
 | 
						|
*
 | 
						|
      END
 |