OpenBLAS/benchmark/pybench/benchmarks/bench_blas.py

275 lines
6.3 KiB
Python

import pytest
import numpy as np
import openblas_wrap as ow
dtype_map = {
's': np.float32,
'd': np.float64,
'c': np.complex64,
'z': np.complex128,
'dz': np.complex128,
}
# ### BLAS level 1 ###
# dnrm2
dnrm2_sizes = [100, 1000]
def run_dnrm2(n, x, incx, func):
res = func(x, n, incx=incx)
return res
@pytest.mark.parametrize('variant', ['d', 'dz'])
@pytest.mark.parametrize('n', dnrm2_sizes)
def test_nrm2(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
nrm2 = ow.get_func('nrm2', variant)
result = benchmark(run_dnrm2, n, x, 1, nrm2)
# ddot
ddot_sizes = [100, 1000]
def run_ddot(x, y, func):
res = func(x, y)
return res
@pytest.mark.parametrize('n', ddot_sizes)
def test_dot(benchmark, n):
rndm = np.random.RandomState(1234)
x = np.array(rndm.uniform(size=(n,)), dtype=float)
y = np.array(rndm.uniform(size=(n,)), dtype=float)
dot = ow.get_func('dot', 'd')
result = benchmark(run_ddot, x, y, dot)
# daxpy
daxpy_sizes = [100, 1000]
def run_daxpy(x, y, func):
res = func(x, y, a=2.0)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', daxpy_sizes)
def test_daxpy(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
axpy = ow.get_func('axpy', variant)
result = benchmark(run_daxpy, x, y, axpy)
# ### BLAS level 2 ###
gemv_sizes = [100, 1000]
def run_gemv(a, x, y, func):
res = func(1.0, a, x, y=y, overwrite_y=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', gemv_sizes)
def test_dgemv(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.empty(n, dtype=dtyp)
a = np.array(rndm.uniform(size=(n,n)), dtype=dtyp)
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.zeros(n, dtype=dtyp)
gemv = ow.get_func('gemv', variant)
result = benchmark(run_gemv, a, x, y, gemv)
assert result is y
# dgbmv
dgbmv_sizes = [100, 1000]
def run_gbmv(m, n, kl, ku, a, x, y, func):
res = func(m, n, kl, ku, 1.0, a, x, y=y, overwrite_y=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', dgbmv_sizes)
@pytest.mark.parametrize('kl', [1])
def test_dgbmv(benchmark, n, kl, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.empty(n, dtype=dtyp)
m = n
a = rndm.uniform(size=(2*kl + 1, n))
a = np.array(a, dtype=dtyp, order='F')
gbmv = ow.get_func('gbmv', variant)
result = benchmark(run_gbmv, m, n, kl, kl, a, x, y, gbmv)
assert result is y
# ### BLAS level 3 ###
# dgemm
gemm_sizes = [100, 1000]
def run_gemm(a, b, c, func):
alpha = 1.0
res = func(alpha, a, b, c=c, overwrite_c=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', gemm_sizes)
def test_gemm(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
b = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
c = np.empty((n, n), dtype=dtyp, order='F')
gemm = ow.get_func('gemm', variant)
result = benchmark(run_gemm, a, b, c, gemm)
assert result is c
# dsyrk
syrk_sizes = [100, 1000]
def run_syrk(a, c, func):
res = func(1.0, a, c=c, overwrite_c=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', syrk_sizes)
def test_syrk(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
c = np.empty((n, n), dtype=dtyp, order='F')
syrk = ow.get_func('syrk', variant)
result = benchmark(run_syrk, a, c, syrk)
assert result is c
# ### LAPACK ###
# linalg.solve
gesv_sizes = [100, 1000]
def run_gesv(a, b, func):
res = func(a, b, overwrite_a=True, overwrite_b=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', gesv_sizes)
def test_gesv(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = (np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F') +
np.eye(n, dtype=dtyp, order='F'))
b = np.array(rndm.uniform(size=(n, 1)), dtype=dtyp, order='F')
gesv = ow.get_func('gesv', variant)
lu, piv, x, info = benchmark(run_gesv, a, b, gesv)
assert lu is a
assert x is b
assert info == 0
# linalg.svd
gesdd_sizes = [(100, 5), (1000, 222)]
def run_gesdd(a, lwork, func):
res = func(a, lwork=lwork, full_matrices=False, overwrite_a=False)
return res
@pytest.mark.parametrize('variant', ['s', 'd'])
@pytest.mark.parametrize('mn', gesdd_sizes)
def test_gesdd(benchmark, mn, variant):
m, n = mn
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = np.array(rndm.uniform(size=(m, n)), dtype=dtyp, order='F')
gesdd_lwork = ow.get_func('gesdd_lwork', variant)
lwork, info = gesdd_lwork(m, n)
lwork = int(lwork)
assert info == 0
gesdd = ow.get_func('gesdd', variant)
u, s, vt, info = benchmark(run_gesdd, a, lwork, gesdd)
assert info == 0
atol = {'s': 1e-5, 'd': 1e-13}
np.testing.assert_allclose(u @ np.diag(s) @ vt, a, atol=atol[variant])
# linalg.eigh
syev_sizes = [50, 200]
def run_syev(a, lwork, func):
res = func(a, lwork=lwork, overwrite_a=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd'])
@pytest.mark.parametrize('n', syev_sizes)
def test_syev(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = rndm.uniform(size=(n, n))
a = np.asarray(a + a.T, dtype=dtyp, order='F')
a_ = a.copy()
dsyev_lwork = ow.get_func('syev_lwork', variant)
lwork, info = dsyev_lwork(n)
lwork = int(lwork)
assert info == 0
syev = ow.get_func('syev', variant)
w, v, info = benchmark(run_syev, a, lwork, syev)
assert info == 0
assert a is v # overwrite_a=True