250 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGET54
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
 | |
| *                          LDV, WORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB, LDS, LDT, LDU, LDV, N
 | |
| *       REAL               RESULT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), B( LDB, * ), S( LDS, * ),
 | |
| *      $                   T( LDT, * ), U( LDU, * ), V( LDV, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGET54 checks a generalized decomposition of the form
 | |
| *>
 | |
| *>          A = U*S*V'  and B = U*T* V'
 | |
| *>
 | |
| *> where ' means transpose and U and V are orthogonal.
 | |
| *>
 | |
| *> Specifically,
 | |
| *>
 | |
| *>  RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrix.  If it is zero, SGET54 does nothing.
 | |
| *>          It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          The original (unfactored) matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB, N)
 | |
| *>          The original (unfactored) matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (LDS, N)
 | |
| *>          The factored matrix S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDS
 | |
| *> \verbatim
 | |
| *>          LDS is INTEGER
 | |
| *>          The leading dimension of S.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array, dimension (LDT, N)
 | |
| *>          The factored matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of T.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is REAL array, dimension (LDU, N)
 | |
| *>          The orthogonal matrix on the left-hand side in the
 | |
| *>          decomposition.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  LDU must be at least N and
 | |
| *>          at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is REAL array, dimension (LDV, N)
 | |
| *>          The orthogonal matrix on the left-hand side in the
 | |
| *>          decomposition.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of V.  LDV must be at least N and
 | |
| *>          at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (3*N**2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL
 | |
| *>          The value RESULT, It is currently limited to 1/ulp, to
 | |
| *>          avoid overflow. Errors are flagged by RESULT=10/ulp.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
 | |
|      $                   LDV, WORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB, LDS, LDT, LDU, LDV, N
 | |
|       REAL               RESULT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), B( LDB, * ), S( LDS, * ),
 | |
|      $                   T( LDT, * ), U( LDU, * ), V( LDV, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               ABNORM, ULP, UNFL, WNORM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               DUM( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMM, SLACPY
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESULT = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Constants
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | |
| *
 | |
| *     compute the norm of (A,B)
 | |
| *
 | |
|       CALL SLACPY( 'Full', N, N, A, LDA, WORK, N )
 | |
|       CALL SLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
 | |
|       ABNORM = MAX( SLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL )
 | |
| *
 | |
| *     Compute W1 = A - U*S*V', and put in the array WORK(1:N*N)
 | |
| *
 | |
|       CALL SLACPY( ' ', N, N, A, LDA, WORK, N )
 | |
|       CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, S, LDS, ZERO,
 | |
|      $            WORK( N*N+1 ), N )
 | |
| *
 | |
|       CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( N*N+1 ), N, V, LDV,
 | |
|      $            ONE, WORK, N )
 | |
| *
 | |
| *     Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N)
 | |
| *
 | |
|       CALL SLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N )
 | |
|       CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, T, LDT, ZERO,
 | |
|      $            WORK( 2*N*N+1 ), N )
 | |
| *
 | |
|       CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( 2*N*N+1 ), N, V, LDV,
 | |
|      $            ONE, WORK( N*N+1 ), N )
 | |
| *
 | |
| *     Compute norm(W)/ ( ulp*norm((A,B)) )
 | |
| *
 | |
|       WNORM = SLANGE( '1', N, 2*N, WORK, N, DUM )
 | |
| *
 | |
|       IF( ABNORM.GT.WNORM ) THEN
 | |
|          RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP )
 | |
|       ELSE
 | |
|          IF( ABNORM.LT.ONE ) THEN
 | |
|             RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP )
 | |
|          ELSE
 | |
|             RESULT = MIN( WNORM / ABNORM, REAL( 2*N ) ) / ( 2*N*ULP )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGET54
 | |
| *
 | |
|       END
 |