291 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHBT21
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
 | |
| *                          RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            KA, KS, LDA, LDU, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), U( LDU, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHBT21  generally checks a decomposition of the form
 | |
| *>
 | |
| *>         A = U S UC>
 | |
| *> where * means conjugate transpose, A is hermitian banded, U is
 | |
| *> unitary, and S is diagonal (if KS=0) or symmetric
 | |
| *> tridiagonal (if KS=1).
 | |
| *>
 | |
| *> Specifically:
 | |
| *>
 | |
| *>         RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC>         RESULT(2) = | I - UU* | / ( n ulp )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER
 | |
| *>          If UPLO='U', the upper triangle of A and V will be used and
 | |
| *>          the (strictly) lower triangle will not be referenced.
 | |
| *>          If UPLO='L', the lower triangle of A and V will be used and
 | |
| *>          the (strictly) upper triangle will not be referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrix.  If it is zero, CHBT21 does nothing.
 | |
| *>          It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KA
 | |
| *> \verbatim
 | |
| *>          KA is INTEGER
 | |
| *>          The bandwidth of the matrix A.  It must be at least zero.  If
 | |
| *>          it is larger than N-1, then max( 0, N-1 ) will be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KS
 | |
| *> \verbatim
 | |
| *>          KS is INTEGER
 | |
| *>          The bandwidth of the matrix S.  It may only be zero or one.
 | |
| *>          If zero, then S is diagonal, and E is not referenced.  If
 | |
| *>          one, then S is symmetric tri-diagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, N)
 | |
| *>          The original (unfactored) matrix.  It is assumed to be
 | |
| *>          hermitian, and only the upper (UPLO='U') or only the lower
 | |
| *>          (UPLO='L') will be referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 1
 | |
| *>          and at least min( KA, N-1 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The diagonal of the (symmetric tri-) diagonal matrix S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
 | |
| *>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
 | |
| *>          (3,2) element, etc.
 | |
| *>          Not referenced if KS=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension (LDU, N)
 | |
| *>          The unitary matrix in the decomposition, expressed as a
 | |
| *>          dense matrix (i.e., not as a product of Householder
 | |
| *>          transformations, Givens transformations, etc.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  LDU must be at least N and
 | |
| *>          at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N**2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (2)
 | |
| *>          The values computed by the two tests described above.  The
 | |
| *>          values are currently limited to 1/ulp, to avoid overflow.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
 | |
|      $                   RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            KA, KS, LDA, LDU, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), U( LDU, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER
 | |
|       CHARACTER          CUPLO
 | |
|       INTEGER            IKA, J, JC, JR
 | |
|       REAL               ANORM, ULP, UNFL, WNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               CLANGE, CLANHB, CLANHP, SLAMCH
 | |
|       EXTERNAL           LSAME, CLANGE, CLANHB, CLANHP, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CHPR, CHPR2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CMPLX, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Constants
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IKA = MAX( 0, MIN( N-1, KA ) )
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          LOWER = .FALSE.
 | |
|          CUPLO = 'U'
 | |
|       ELSE
 | |
|          LOWER = .TRUE.
 | |
|          CUPLO = 'L'
 | |
|       END IF
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | |
| *
 | |
| *     Some Error Checks
 | |
| *
 | |
| *     Do Test 1
 | |
| *
 | |
| *     Norm of A:
 | |
| *
 | |
|       ANORM = MAX( CLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL )
 | |
| *
 | |
| *     Compute error matrix:    Error = A - U S U*
 | |
| *
 | |
| *     Copy A from SB to SP storage format.
 | |
| *
 | |
|       J = 0
 | |
|       DO 50 JC = 1, N
 | |
|          IF( LOWER ) THEN
 | |
|             DO 10 JR = 1, MIN( IKA+1, N+1-JC )
 | |
|                J = J + 1
 | |
|                WORK( J ) = A( JR, JC )
 | |
|    10       CONTINUE
 | |
|             DO 20 JR = IKA + 2, N + 1 - JC
 | |
|                J = J + 1
 | |
|                WORK( J ) = ZERO
 | |
|    20       CONTINUE
 | |
|          ELSE
 | |
|             DO 30 JR = IKA + 2, JC
 | |
|                J = J + 1
 | |
|                WORK( J ) = ZERO
 | |
|    30       CONTINUE
 | |
|             DO 40 JR = MIN( IKA, JC-1 ), 0, -1
 | |
|                J = J + 1
 | |
|                WORK( J ) = A( IKA+1-JR, JC )
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|    50 CONTINUE
 | |
| *
 | |
|       DO 60 J = 1, N
 | |
|          CALL CHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
 | |
|    60 CONTINUE
 | |
| *
 | |
|       IF( N.GT.1 .AND. KS.EQ.1 ) THEN
 | |
|          DO 70 J = 1, N - 1
 | |
|             CALL CHPR2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1,
 | |
|      $                  U( 1, J+1 ), 1, WORK )
 | |
|    70    CONTINUE
 | |
|       END IF
 | |
|       WNORM = CLANHP( '1', CUPLO, N, WORK, RWORK )
 | |
| *
 | |
|       IF( ANORM.GT.WNORM ) THEN
 | |
|          RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
 | |
|       ELSE
 | |
|          IF( ANORM.LT.ONE ) THEN
 | |
|             RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | |
|          ELSE
 | |
|             RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Do Test 2
 | |
| *
 | |
| *     Compute  UU* - I
 | |
| *
 | |
|       CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
 | |
|      $            N )
 | |
| *
 | |
|       DO 80 J = 1, N
 | |
|          WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
 | |
|    80 CONTINUE
 | |
| *
 | |
|       RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ),
 | |
|      $              REAL( N ) ) / ( N*ULP )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHBT21
 | |
| *
 | |
|       END
 |