200 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CBDT02
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
 | |
| *                          RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDB, LDC, LDU, M, N
 | |
| *       REAL               RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            B( LDB, * ), C( LDC, * ), U( LDU, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CBDT02 tests the change of basis C = U' * B by computing the residual
 | |
| *>
 | |
| *>    RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
 | |
| *>
 | |
| *> where B and C are M by N matrices, U is an M by M orthogonal matrix,
 | |
| *> and EPS is the machine precision.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrices B and C and the order of
 | |
| *>          the matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices B and C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          The m by n matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX array, dimension (LDC,N)
 | |
| *>          The m by n matrix C, assumed to contain U' * B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C.  LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension (LDU,M)
 | |
| *>          The m by m orthogonal matrix U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U.  LDU >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDB, LDC, LDU, M, N
 | |
|       REAL               RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            B( LDB, * ), C( LDC, * ), U( LDU, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| * ======================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J
 | |
|       REAL               BNORM, EPS, REALMN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               CLANGE, SCASUM, SLAMCH
 | |
|       EXTERNAL           CLANGE, SCASUM, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CGEMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CMPLX, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       RESID = ZERO
 | |
|       IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $   RETURN
 | |
|       REALMN = REAL( MAX( M, N ) )
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
| *
 | |
| *     Compute norm( B - U * C )
 | |
| *
 | |
|       DO 10 J = 1, N
 | |
|          CALL CCOPY( M, B( 1, J ), 1, WORK, 1 )
 | |
|          CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), U, LDU,
 | |
|      $               C( 1, J ), 1, CMPLX( ONE ), WORK, 1 )
 | |
|          RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Compute norm of B.
 | |
| *
 | |
|       BNORM = CLANGE( '1', M, N, B, LDB, RWORK )
 | |
| *
 | |
|       IF( BNORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          IF( BNORM.GE.RESID ) THEN
 | |
|             RESID = ( RESID / BNORM ) / ( REALMN*EPS )
 | |
|          ELSE
 | |
|             IF( BNORM.LT.ONE ) THEN
 | |
|                RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
 | |
|      $                 ( REALMN*EPS )
 | |
|             ELSE
 | |
|                RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CBDT02
 | |
| *
 | |
|       END
 |