920 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			920 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAMCHF77 deprecated
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *      DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAMCHF77 determines double precision machine parameters.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] CMACH
 | |
| *> \verbatim
 | |
| *>          Specifies the value to be returned by DLAMCH:
 | |
| *>          = 'E' or 'e',   DLAMCH := eps
 | |
| *>          = 'S' or 's ,   DLAMCH := sfmin
 | |
| *>          = 'B' or 'b',   DLAMCH := base
 | |
| *>          = 'P' or 'p',   DLAMCH := eps*base
 | |
| *>          = 'N' or 'n',   DLAMCH := t
 | |
| *>          = 'R' or 'r',   DLAMCH := rnd
 | |
| *>          = 'M' or 'm',   DLAMCH := emin
 | |
| *>          = 'U' or 'u',   DLAMCH := rmin
 | |
| *>          = 'L' or 'l',   DLAMCH := emax
 | |
| *>          = 'O' or 'o',   DLAMCH := rmax
 | |
| *>          where
 | |
| *>          eps   = relative machine precision
 | |
| *>          sfmin = safe minimum, such that 1/sfmin does not overflow
 | |
| *>          base  = base of the machine
 | |
| *>          prec  = eps*base
 | |
| *>          t     = number of (base) digits in the mantissa
 | |
| *>          rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise
 | |
| *>          emin  = minimum exponent before (gradual) underflow
 | |
| *>          rmin  = underflow threshold - base**(emin-1)
 | |
| *>          emax  = largest exponent before overflow
 | |
| *>          rmax  = overflow threshold  - (base**emax)*(1-eps)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup auxOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          CMACH
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            FIRST, LRND
 | |
|       INTEGER            BETA, IMAX, IMIN, IT
 | |
|       DOUBLE PRECISION   BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN,
 | |
|      $                   RND, SFMIN, SMALL, T
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLAMC2
 | |
| *     ..
 | |
| *     .. Save statement ..
 | |
|       SAVE               FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN,
 | |
|      $                   EMAX, RMAX, PREC
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               FIRST / .TRUE. /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( FIRST ) THEN
 | |
|          CALL DLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX )
 | |
|          BASE = BETA
 | |
|          T = IT
 | |
|          IF( LRND ) THEN
 | |
|             RND = ONE
 | |
|             EPS = ( BASE**( 1-IT ) ) / 2
 | |
|          ELSE
 | |
|             RND = ZERO
 | |
|             EPS = BASE**( 1-IT )
 | |
|          END IF
 | |
|          PREC = EPS*BASE
 | |
|          EMIN = IMIN
 | |
|          EMAX = IMAX
 | |
|          SFMIN = RMIN
 | |
|          SMALL = ONE / RMAX
 | |
|          IF( SMALL.GE.SFMIN ) THEN
 | |
| *
 | |
| *           Use SMALL plus a bit, to avoid the possibility of rounding
 | |
| *           causing overflow when computing  1/sfmin.
 | |
| *
 | |
|             SFMIN = SMALL*( ONE+EPS )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( CMACH, 'E' ) ) THEN
 | |
|          RMACH = EPS
 | |
|       ELSE IF( LSAME( CMACH, 'S' ) ) THEN
 | |
|          RMACH = SFMIN
 | |
|       ELSE IF( LSAME( CMACH, 'B' ) ) THEN
 | |
|          RMACH = BASE
 | |
|       ELSE IF( LSAME( CMACH, 'P' ) ) THEN
 | |
|          RMACH = PREC
 | |
|       ELSE IF( LSAME( CMACH, 'N' ) ) THEN
 | |
|          RMACH = T
 | |
|       ELSE IF( LSAME( CMACH, 'R' ) ) THEN
 | |
|          RMACH = RND
 | |
|       ELSE IF( LSAME( CMACH, 'M' ) ) THEN
 | |
|          RMACH = EMIN
 | |
|       ELSE IF( LSAME( CMACH, 'U' ) ) THEN
 | |
|          RMACH = RMIN
 | |
|       ELSE IF( LSAME( CMACH, 'L' ) ) THEN
 | |
|          RMACH = EMAX
 | |
|       ELSE IF( LSAME( CMACH, 'O' ) ) THEN
 | |
|          RMACH = RMAX
 | |
|       END IF
 | |
| *
 | |
|       DLAMCH = RMACH
 | |
|       FIRST  = .FALSE.
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAMCH
 | |
| *
 | |
|       END
 | |
| *
 | |
| ************************************************************************
 | |
| *
 | |
| *> \brief \b DLAMC1
 | |
| *> \details
 | |
| *> \b Purpose:
 | |
| *> \verbatim
 | |
| *> DLAMC1 determines the machine parameters given by BETA, T, RND, and
 | |
| *> IEEE1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          The base of the machine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          The number of ( BETA ) digits in the mantissa.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RND
 | |
| *> \verbatim
 | |
| *>          Specifies whether proper rounding  ( RND = .TRUE. )  or
 | |
| *>          chopping  ( RND = .FALSE. )  occurs in addition. This may not
 | |
| *>          be a reliable guide to the way in which the machine performs
 | |
| *>          its arithmetic.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IEEE1
 | |
| *> \verbatim
 | |
| *>          Specifies whether rounding appears to be done in the IEEE
 | |
| *>          'round to nearest' style.
 | |
| *> \endverbatim
 | |
| *> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
 | |
| *> \date April 2012
 | |
| *> \ingroup auxOTHERauxiliary
 | |
| *>
 | |
| *> \details \b Further \b Details
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The routine is based on the routine  ENVRON  by Malcolm and
 | |
| *>  incorporates suggestions by Gentleman and Marovich. See
 | |
| *>
 | |
| *>     Malcolm M. A. (1972) Algorithms to reveal properties of
 | |
| *>        floating-point arithmetic. Comms. of the ACM, 15, 949-951.
 | |
| *>
 | |
| *>     Gentleman W. M. and Marovich S. B. (1974) More on algorithms
 | |
| *>        that reveal properties of floating point arithmetic units.
 | |
| *>        Comms. of the ACM, 17, 276-277.
 | |
| *> \endverbatim
 | |
| *>
 | |
|       SUBROUTINE DLAMC1( BETA, T, RND, IEEE1 )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.1) --
 | |
| *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 | |
| *     November 2010
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            IEEE1, RND
 | |
|       INTEGER            BETA, T
 | |
| *     ..
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            FIRST, LIEEE1, LRND
 | |
|       INTEGER            LBETA, LT
 | |
|       DOUBLE PRECISION   A, B, C, F, ONE, QTR, SAVEC, T1, T2
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMC3
 | |
|       EXTERNAL           DLAMC3
 | |
| *     ..
 | |
| *     .. Save statement ..
 | |
|       SAVE               FIRST, LIEEE1, LBETA, LRND, LT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               FIRST / .TRUE. /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( FIRST ) THEN
 | |
|          ONE = 1
 | |
| *
 | |
| *        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BETA,
 | |
| *        IEEE1, T and RND.
 | |
| *
 | |
| *        Throughout this routine  we use the function  DLAMC3  to ensure
 | |
| *        that relevant values are  stored and not held in registers,  or
 | |
| *        are not affected by optimizers.
 | |
| *
 | |
| *        Compute  a = 2.0**m  with the  smallest positive integer m such
 | |
| *        that
 | |
| *
 | |
| *           fl( a + 1.0 ) = a.
 | |
| *
 | |
|          A = 1
 | |
|          C = 1
 | |
| *
 | |
| *+       WHILE( C.EQ.ONE )LOOP
 | |
|    10    CONTINUE
 | |
|          IF( C.EQ.ONE ) THEN
 | |
|             A = 2*A
 | |
|             C = DLAMC3( A, ONE )
 | |
|             C = DLAMC3( C, -A )
 | |
|             GO TO 10
 | |
|          END IF
 | |
| *+       END WHILE
 | |
| *
 | |
| *        Now compute  b = 2.0**m  with the smallest positive integer m
 | |
| *        such that
 | |
| *
 | |
| *           fl( a + b ) .gt. a.
 | |
| *
 | |
|          B = 1
 | |
|          C = DLAMC3( A, B )
 | |
| *
 | |
| *+       WHILE( C.EQ.A )LOOP
 | |
|    20    CONTINUE
 | |
|          IF( C.EQ.A ) THEN
 | |
|             B = 2*B
 | |
|             C = DLAMC3( A, B )
 | |
|             GO TO 20
 | |
|          END IF
 | |
| *+       END WHILE
 | |
| *
 | |
| *        Now compute the base.  a and c  are neighbouring floating point
 | |
| *        numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and so
 | |
| *        their difference is beta. Adding 0.25 to c is to ensure that it
 | |
| *        is truncated to beta and not ( beta - 1 ).
 | |
| *
 | |
|          QTR = ONE / 4
 | |
|          SAVEC = C
 | |
|          C = DLAMC3( C, -A )
 | |
|          LBETA = C + QTR
 | |
| *
 | |
| *        Now determine whether rounding or chopping occurs,  by adding a
 | |
| *        bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a.
 | |
| *
 | |
|          B = LBETA
 | |
|          F = DLAMC3( B / 2, -B / 100 )
 | |
|          C = DLAMC3( F, A )
 | |
|          IF( C.EQ.A ) THEN
 | |
|             LRND = .TRUE.
 | |
|          ELSE
 | |
|             LRND = .FALSE.
 | |
|          END IF
 | |
|          F = DLAMC3( B / 2, B / 100 )
 | |
|          C = DLAMC3( F, A )
 | |
|          IF( ( LRND ) .AND. ( C.EQ.A ) )
 | |
|      $      LRND = .FALSE.
 | |
| *
 | |
| *        Try and decide whether rounding is done in the  IEEE  'round to
 | |
| *        nearest' style. B/2 is half a unit in the last place of the two
 | |
| *        numbers A and SAVEC. Furthermore, A is even, i.e. has last  bit
 | |
| *        zero, and SAVEC is odd. Thus adding B/2 to A should not  change
 | |
| *        A, but adding B/2 to SAVEC should change SAVEC.
 | |
| *
 | |
|          T1 = DLAMC3( B / 2, A )
 | |
|          T2 = DLAMC3( B / 2, SAVEC )
 | |
|          LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
 | |
| *
 | |
| *        Now find  the  mantissa, t.  It should  be the  integer part of
 | |
| *        log to the base beta of a,  however it is safer to determine  t
 | |
| *        by powering.  So we find t as the smallest positive integer for
 | |
| *        which
 | |
| *
 | |
| *           fl( beta**t + 1.0 ) = 1.0.
 | |
| *
 | |
|          LT = 0
 | |
|          A = 1
 | |
|          C = 1
 | |
| *
 | |
| *+       WHILE( C.EQ.ONE )LOOP
 | |
|    30    CONTINUE
 | |
|          IF( C.EQ.ONE ) THEN
 | |
|             LT = LT + 1
 | |
|             A = A*LBETA
 | |
|             C = DLAMC3( A, ONE )
 | |
|             C = DLAMC3( C, -A )
 | |
|             GO TO 30
 | |
|          END IF
 | |
| *+       END WHILE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       BETA = LBETA
 | |
|       T = LT
 | |
|       RND = LRND
 | |
|       IEEE1 = LIEEE1
 | |
|       FIRST = .FALSE.
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAMC1
 | |
| *
 | |
|       END
 | |
| *
 | |
| ************************************************************************
 | |
| *
 | |
| *> \brief \b DLAMC2
 | |
| *> \details
 | |
| *> \b Purpose:
 | |
| *> \verbatim
 | |
| *> DLAMC2 determines the machine parameters specified in its argument
 | |
| *> list.
 | |
| *> \endverbatim
 | |
| *> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
 | |
| *> \date April 2012
 | |
| *> \ingroup auxOTHERauxiliary
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          The base of the machine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          The number of ( BETA ) digits in the mantissa.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RND
 | |
| *> \verbatim
 | |
| *>          Specifies whether proper rounding  ( RND = .TRUE. )  or
 | |
| *>          chopping  ( RND = .FALSE. )  occurs in addition. This may not
 | |
| *>          be a reliable guide to the way in which the machine performs
 | |
| *>          its arithmetic.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EPS
 | |
| *> \verbatim
 | |
| *>          The smallest positive number such that
 | |
| *>             fl( 1.0 - EPS ) .LT. 1.0,
 | |
| *>          where fl denotes the computed value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EMIN
 | |
| *> \verbatim
 | |
| *>          The minimum exponent before (gradual) underflow occurs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RMIN
 | |
| *> \verbatim
 | |
| *>          The smallest normalized number for the machine, given by
 | |
| *>          BASE**( EMIN - 1 ), where  BASE  is the floating point value
 | |
| *>          of BETA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EMAX
 | |
| *> \verbatim
 | |
| *>          The maximum exponent before overflow occurs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RMAX
 | |
| *> \verbatim
 | |
| *>          The largest positive number for the machine, given by
 | |
| *>          BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point
 | |
| *>          value of BETA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \details \b Further \b Details
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The computation of  EPS  is based on a routine PARANOIA by
 | |
| *>  W. Kahan of the University of California at Berkeley.
 | |
| *> \endverbatim
 | |
|       SUBROUTINE DLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.1) --
 | |
| *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 | |
| *     November 2010
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            RND
 | |
|       INTEGER            BETA, EMAX, EMIN, T
 | |
|       DOUBLE PRECISION   EPS, RMAX, RMIN
 | |
| *     ..
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            FIRST, IEEE, IWARN, LIEEE1, LRND
 | |
|       INTEGER            GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT,
 | |
|      $                   NGNMIN, NGPMIN
 | |
|       DOUBLE PRECISION   A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE,
 | |
|      $                   SIXTH, SMALL, THIRD, TWO, ZERO
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMC3
 | |
|       EXTERNAL           DLAMC3
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLAMC1, DLAMC4, DLAMC5
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Save statement ..
 | |
|       SAVE               FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX,
 | |
|      $                   LRMIN, LT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               FIRST / .TRUE. / , IWARN / .FALSE. /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( FIRST ) THEN
 | |
|          ZERO = 0
 | |
|          ONE = 1
 | |
|          TWO = 2
 | |
| *
 | |
| *        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values of
 | |
| *        BETA, T, RND, EPS, EMIN and RMIN.
 | |
| *
 | |
| *        Throughout this routine  we use the function  DLAMC3  to ensure
 | |
| *        that relevant values are stored  and not held in registers,  or
 | |
| *        are not affected by optimizers.
 | |
| *
 | |
| *        DLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1.
 | |
| *
 | |
|          CALL DLAMC1( LBETA, LT, LRND, LIEEE1 )
 | |
| *
 | |
| *        Start to find EPS.
 | |
| *
 | |
|          B = LBETA
 | |
|          A = B**( -LT )
 | |
|          LEPS = A
 | |
| *
 | |
| *        Try some tricks to see whether or not this is the correct  EPS.
 | |
| *
 | |
|          B = TWO / 3
 | |
|          HALF = ONE / 2
 | |
|          SIXTH = DLAMC3( B, -HALF )
 | |
|          THIRD = DLAMC3( SIXTH, SIXTH )
 | |
|          B = DLAMC3( THIRD, -HALF )
 | |
|          B = DLAMC3( B, SIXTH )
 | |
|          B = ABS( B )
 | |
|          IF( B.LT.LEPS )
 | |
|      $      B = LEPS
 | |
| *
 | |
|          LEPS = 1
 | |
| *
 | |
| *+       WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP
 | |
|    10    CONTINUE
 | |
|          IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN
 | |
|             LEPS = B
 | |
|             C = DLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) )
 | |
|             C = DLAMC3( HALF, -C )
 | |
|             B = DLAMC3( HALF, C )
 | |
|             C = DLAMC3( HALF, -B )
 | |
|             B = DLAMC3( HALF, C )
 | |
|             GO TO 10
 | |
|          END IF
 | |
| *+       END WHILE
 | |
| *
 | |
|          IF( A.LT.LEPS )
 | |
|      $      LEPS = A
 | |
| *
 | |
| *        Computation of EPS complete.
 | |
| *
 | |
| *        Now find  EMIN.  Let A = + or - 1, and + or - (1 + BASE**(-3)).
 | |
| *        Keep dividing  A by BETA until (gradual) underflow occurs. This
 | |
| *        is detected when we cannot recover the previous A.
 | |
| *
 | |
|          RBASE = ONE / LBETA
 | |
|          SMALL = ONE
 | |
|          DO 20 I = 1, 3
 | |
|             SMALL = DLAMC3( SMALL*RBASE, ZERO )
 | |
|    20    CONTINUE
 | |
|          A = DLAMC3( ONE, SMALL )
 | |
|          CALL DLAMC4( NGPMIN, ONE, LBETA )
 | |
|          CALL DLAMC4( NGNMIN, -ONE, LBETA )
 | |
|          CALL DLAMC4( GPMIN, A, LBETA )
 | |
|          CALL DLAMC4( GNMIN, -A, LBETA )
 | |
|          IEEE = .FALSE.
 | |
| *
 | |
|          IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN
 | |
|             IF( NGPMIN.EQ.GPMIN ) THEN
 | |
|                LEMIN = NGPMIN
 | |
| *            ( Non twos-complement machines, no gradual underflow;
 | |
| *              e.g.,  VAX )
 | |
|             ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN
 | |
|                LEMIN = NGPMIN - 1 + LT
 | |
|                IEEE = .TRUE.
 | |
| *            ( Non twos-complement machines, with gradual underflow;
 | |
| *              e.g., IEEE standard followers )
 | |
|             ELSE
 | |
|                LEMIN = MIN( NGPMIN, GPMIN )
 | |
| *            ( A guess; no known machine )
 | |
|                IWARN = .TRUE.
 | |
|             END IF
 | |
| *
 | |
|          ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN
 | |
|             IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN
 | |
|                LEMIN = MAX( NGPMIN, NGNMIN )
 | |
| *            ( Twos-complement machines, no gradual underflow;
 | |
| *              e.g., CYBER 205 )
 | |
|             ELSE
 | |
|                LEMIN = MIN( NGPMIN, NGNMIN )
 | |
| *            ( A guess; no known machine )
 | |
|                IWARN = .TRUE.
 | |
|             END IF
 | |
| *
 | |
|          ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND.
 | |
|      $            ( GPMIN.EQ.GNMIN ) ) THEN
 | |
|             IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN
 | |
|                LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT
 | |
| *            ( Twos-complement machines with gradual underflow;
 | |
| *              no known machine )
 | |
|             ELSE
 | |
|                LEMIN = MIN( NGPMIN, NGNMIN )
 | |
| *            ( A guess; no known machine )
 | |
|                IWARN = .TRUE.
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
|             LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN )
 | |
| *         ( A guess; no known machine )
 | |
|             IWARN = .TRUE.
 | |
|          END IF
 | |
|          FIRST = .FALSE.
 | |
| ***
 | |
| * Comment out this if block if EMIN is ok
 | |
|          IF( IWARN ) THEN
 | |
|             FIRST = .TRUE.
 | |
|             WRITE( 6, FMT = 9999 )LEMIN
 | |
|          END IF
 | |
| ***
 | |
| *
 | |
| *        Assume IEEE arithmetic if we found denormalised  numbers above,
 | |
| *        or if arithmetic seems to round in the  IEEE style,  determined
 | |
| *        in routine DLAMC1. A true IEEE machine should have both  things
 | |
| *        true; however, faulty machines may have one or the other.
 | |
| *
 | |
|          IEEE = IEEE .OR. LIEEE1
 | |
| *
 | |
| *        Compute  RMIN by successive division by  BETA. We could compute
 | |
| *        RMIN as BASE**( EMIN - 1 ),  but some machines underflow during
 | |
| *        this computation.
 | |
| *
 | |
|          LRMIN = 1
 | |
|          DO 30 I = 1, 1 - LEMIN
 | |
|             LRMIN = DLAMC3( LRMIN*RBASE, ZERO )
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Finally, call DLAMC5 to compute EMAX and RMAX.
 | |
| *
 | |
|          CALL DLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX )
 | |
|       END IF
 | |
| *
 | |
|       BETA = LBETA
 | |
|       T = LT
 | |
|       RND = LRND
 | |
|       EPS = LEPS
 | |
|       EMIN = LEMIN
 | |
|       RMIN = LRMIN
 | |
|       EMAX = LEMAX
 | |
|       RMAX = LRMAX
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
|  9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-',
 | |
|      $      '  EMIN = ', I8, /
 | |
|      $      ' If, after inspection, the value EMIN looks',
 | |
|      $      ' acceptable please comment out ',
 | |
|      $      / ' the IF block as marked within the code of routine',
 | |
|      $      ' DLAMC2,', / ' otherwise supply EMIN explicitly.', / )
 | |
| *
 | |
| *     End of DLAMC2
 | |
| *
 | |
|       END
 | |
| *
 | |
| ************************************************************************
 | |
| *
 | |
| *> \brief \b DLAMC3
 | |
| *> \details
 | |
| *> \b Purpose:
 | |
| *> \verbatim
 | |
| *> DLAMC3  is intended to force  A  and  B  to be stored prior to doing
 | |
| *> the addition of  A  and  B ,  for use in situations where optimizers
 | |
| *> might hold one of these in a register.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          The values A and B.
 | |
| *> \endverbatim
 | |
| 
 | |
|       DOUBLE PRECISION FUNCTION DLAMC3( A, B )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.1) --
 | |
| *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 | |
| *     November 2010
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   A, B
 | |
| *     ..
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       DLAMC3 = A + B
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAMC3
 | |
| *
 | |
|       END
 | |
| *
 | |
| ************************************************************************
 | |
| *
 | |
| *> \brief \b DLAMC4
 | |
| *> \details
 | |
| *> \b Purpose:
 | |
| *> \verbatim
 | |
| *> DLAMC4 is a service routine for DLAMC2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EMIN
 | |
| *> \verbatim
 | |
| *>          The minimum exponent before (gradual) underflow, computed by
 | |
| *>          setting A = START and dividing by BASE until the previous A
 | |
| *>          can not be recovered.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] START
 | |
| *> \verbatim
 | |
| *>          The starting point for determining EMIN.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BASE
 | |
| *> \verbatim
 | |
| *>          The base of the machine.
 | |
| *> \endverbatim
 | |
| *>
 | |
|       SUBROUTINE DLAMC4( EMIN, START, BASE )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.1) --
 | |
| *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 | |
| *     November 2010
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            BASE, EMIN
 | |
|       DOUBLE PRECISION   START
 | |
| *     ..
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       DOUBLE PRECISION   A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMC3
 | |
|       EXTERNAL           DLAMC3
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       A = START
 | |
|       ONE = 1
 | |
|       RBASE = ONE / BASE
 | |
|       ZERO = 0
 | |
|       EMIN = 1
 | |
|       B1 = DLAMC3( A*RBASE, ZERO )
 | |
|       C1 = A
 | |
|       C2 = A
 | |
|       D1 = A
 | |
|       D2 = A
 | |
| *+    WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
 | |
| *    $       ( D1.EQ.A ).AND.( D2.EQ.A )      )LOOP
 | |
|    10 CONTINUE
 | |
|       IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND.
 | |
|      $    ( D2.EQ.A ) ) THEN
 | |
|          EMIN = EMIN - 1
 | |
|          A = B1
 | |
|          B1 = DLAMC3( A / BASE, ZERO )
 | |
|          C1 = DLAMC3( B1*BASE, ZERO )
 | |
|          D1 = ZERO
 | |
|          DO 20 I = 1, BASE
 | |
|             D1 = D1 + B1
 | |
|    20    CONTINUE
 | |
|          B2 = DLAMC3( A*RBASE, ZERO )
 | |
|          C2 = DLAMC3( B2 / RBASE, ZERO )
 | |
|          D2 = ZERO
 | |
|          DO 30 I = 1, BASE
 | |
|             D2 = D2 + B2
 | |
|    30    CONTINUE
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *+    END WHILE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAMC4
 | |
| *
 | |
|       END
 | |
| *
 | |
| ************************************************************************
 | |
| *
 | |
| *> \brief \b DLAMC5
 | |
| *> \details
 | |
| *> \b Purpose:
 | |
| *> \verbatim
 | |
| *> DLAMC5 attempts to compute RMAX, the largest machine floating-point
 | |
| *> number, without overflow.  It assumes that EMAX + abs(EMIN) sum
 | |
| *> approximately to a power of 2.  It will fail on machines where this
 | |
| *> assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
 | |
| *> EMAX = 28718).  It will also fail if the value supplied for EMIN is
 | |
| *> too large (i.e. too close to zero), probably with overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          The base of floating-point arithmetic.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          The number of base BETA digits in the mantissa of a
 | |
| *>          floating-point value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EMIN
 | |
| *> \verbatim
 | |
| *>          The minimum exponent before (gradual) underflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IEEE
 | |
| *> \verbatim
 | |
| *>          A logical flag specifying whether or not the arithmetic
 | |
| *>          system is thought to comply with the IEEE standard.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EMAX
 | |
| *> \verbatim
 | |
| *>          The largest exponent before overflow
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RMAX
 | |
| *> \verbatim
 | |
| *>          The largest machine floating-point number.
 | |
| *> \endverbatim
 | |
| *>
 | |
|       SUBROUTINE DLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.1) --
 | |
| *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 | |
| *     November 2010
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            IEEE
 | |
|       INTEGER            BETA, EMAX, EMIN, P
 | |
|       DOUBLE PRECISION   RMAX
 | |
| *     ..
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP
 | |
|       DOUBLE PRECISION   OLDY, RECBAS, Y, Z
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMC3
 | |
|       EXTERNAL           DLAMC3
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MOD
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     First compute LEXP and UEXP, two powers of 2 that bound
 | |
| *     abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
 | |
| *     approximately to the bound that is closest to abs(EMIN).
 | |
| *     (EMAX is the exponent of the required number RMAX).
 | |
| *
 | |
|       LEXP = 1
 | |
|       EXBITS = 1
 | |
|    10 CONTINUE
 | |
|       TRY = LEXP*2
 | |
|       IF( TRY.LE.( -EMIN ) ) THEN
 | |
|          LEXP = TRY
 | |
|          EXBITS = EXBITS + 1
 | |
|          GO TO 10
 | |
|       END IF
 | |
|       IF( LEXP.EQ.-EMIN ) THEN
 | |
|          UEXP = LEXP
 | |
|       ELSE
 | |
|          UEXP = TRY
 | |
|          EXBITS = EXBITS + 1
 | |
|       END IF
 | |
| *
 | |
| *     Now -LEXP is less than or equal to EMIN, and -UEXP is greater
 | |
| *     than or equal to EMIN. EXBITS is the number of bits needed to
 | |
| *     store the exponent.
 | |
| *
 | |
|       IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN
 | |
|          EXPSUM = 2*LEXP
 | |
|       ELSE
 | |
|          EXPSUM = 2*UEXP
 | |
|       END IF
 | |
| *
 | |
| *     EXPSUM is the exponent range, approximately equal to
 | |
| *     EMAX - EMIN + 1 .
 | |
| *
 | |
|       EMAX = EXPSUM + EMIN - 1
 | |
|       NBITS = 1 + EXBITS + P
 | |
| *
 | |
| *     NBITS is the total number of bits needed to store a
 | |
| *     floating-point number.
 | |
| *
 | |
|       IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN
 | |
| *
 | |
| *        Either there are an odd number of bits used to store a
 | |
| *        floating-point number, which is unlikely, or some bits are
 | |
| *        not used in the representation of numbers, which is possible,
 | |
| *        (e.g. Cray machines) or the mantissa has an implicit bit,
 | |
| *        (e.g. IEEE machines, Dec Vax machines), which is perhaps the
 | |
| *        most likely. We have to assume the last alternative.
 | |
| *        If this is true, then we need to reduce EMAX by one because
 | |
| *        there must be some way of representing zero in an implicit-bit
 | |
| *        system. On machines like Cray, we are reducing EMAX by one
 | |
| *        unnecessarily.
 | |
| *
 | |
|          EMAX = EMAX - 1
 | |
|       END IF
 | |
| *
 | |
|       IF( IEEE ) THEN
 | |
| *
 | |
| *        Assume we are on an IEEE machine which reserves one exponent
 | |
| *        for infinity and NaN.
 | |
| *
 | |
|          EMAX = EMAX - 1
 | |
|       END IF
 | |
| *
 | |
| *     Now create RMAX, the largest machine number, which should
 | |
| *     be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
 | |
| *
 | |
| *     First compute 1.0 - BETA**(-P), being careful that the
 | |
| *     result is less than 1.0 .
 | |
| *
 | |
|       RECBAS = ONE / BETA
 | |
|       Z = BETA - ONE
 | |
|       Y = ZERO
 | |
|       DO 20 I = 1, P
 | |
|          Z = Z*RECBAS
 | |
|          IF( Y.LT.ONE )
 | |
|      $      OLDY = Y
 | |
|          Y = DLAMC3( Y, Z )
 | |
|    20 CONTINUE
 | |
|       IF( Y.GE.ONE )
 | |
|      $   Y = OLDY
 | |
| *
 | |
| *     Now multiply by BETA**EMAX to get RMAX.
 | |
| *
 | |
|       DO 30 I = 1, EMAX
 | |
|          Y = DLAMC3( Y*BETA, ZERO )
 | |
|    30 CONTINUE
 | |
| *
 | |
|       RMAX = Y
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAMC5
 | |
| *
 | |
|       END
 |