231 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SQRT02
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SQRT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
 | 
						|
*                          RWORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            K, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
 | 
						|
*      $                   R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
 | 
						|
*      $                   WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SQRT02 tests SORGQR, which generates an m-by-n matrix Q with
 | 
						|
*> orthonornmal columns that is defined as the product of k elementary
 | 
						|
*> reflectors.
 | 
						|
*>
 | 
						|
*> Given the QR factorization of an m-by-n matrix A, SQRT02 generates
 | 
						|
*> the orthogonal matrix Q defined by the factorization of the first k
 | 
						|
*> columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k),
 | 
						|
*> and checks that the columns of Q are orthonormal.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix Q to be generated.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix Q to be generated.
 | 
						|
*>          M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines the
 | 
						|
*>          matrix Q. N >= K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The m-by-n matrix A which was factorized by SQRT01.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (LDA,N)
 | 
						|
*>          Details of the QR factorization of A, as returned by SGEQRF.
 | 
						|
*>          See SGEQRF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDA,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is REAL array, dimension (LDA,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the arrays A, AF, Q and R. LDA >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension (N)
 | 
						|
*>          The scalar factors of the elementary reflectors corresponding
 | 
						|
*>          to the QR factorization in AF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (2)
 | 
						|
*>          The test ratios:
 | 
						|
*>          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
 | 
						|
*>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SQRT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
 | 
						|
     $                   RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            K, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
 | 
						|
     $                   R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
 | 
						|
     $                   WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      REAL               ROGUE
 | 
						|
      PARAMETER          ( ROGUE = -1.0E+10 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            INFO
 | 
						|
      REAL               ANORM, EPS, RESID
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLANGE, SLANSY
 | 
						|
      EXTERNAL           SLAMCH, SLANGE, SLANSY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMM, SLACPY, SLASET, SORGQR, SSYRK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Copy the first k columns of the factorization to the array Q
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
 | 
						|
      CALL SLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
 | 
						|
*
 | 
						|
*     Generate the first n columns of the matrix Q
 | 
						|
*
 | 
						|
      SRNAMT = 'SORGQR'
 | 
						|
      CALL SORGQR( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*     Copy R(1:n,1:k)
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N, K, ZERO, ZERO, R, LDA )
 | 
						|
      CALL SLACPY( 'Upper', N, K, AF, LDA, R, LDA )
 | 
						|
*
 | 
						|
*     Compute R(1:n,1:k) - Q(1:m,1:n)' * A(1:m,1:k)
 | 
						|
*
 | 
						|
      CALL SGEMM( 'Transpose', 'No transpose', N, K, M, -ONE, Q, LDA, A,
 | 
						|
     $            LDA, ONE, R, LDA )
 | 
						|
*
 | 
						|
*     Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
 | 
						|
*
 | 
						|
      ANORM = SLANGE( '1', M, K, A, LDA, RWORK )
 | 
						|
      RESID = SLANGE( '1', N, K, R, LDA, RWORK )
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS
 | 
						|
      ELSE
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute I - Q'*Q
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
 | 
						|
      CALL SSYRK( 'Upper', 'Transpose', N, M, -ONE, Q, LDA, ONE, R,
 | 
						|
     $            LDA )
 | 
						|
*
 | 
						|
*     Compute norm( I - Q'*Q ) / ( M * EPS ) .
 | 
						|
*
 | 
						|
      RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
 | 
						|
*
 | 
						|
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SQRT02
 | 
						|
*
 | 
						|
      END
 |