221 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGET01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
 | 
						|
*                          RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDAFAC, M, N
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGET01 reconstructs a matrix A from its L*U factorization and
 | 
						|
*> computes the residual
 | 
						|
*>    norm(L*U - A) / ( N * norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          The original M x N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX array, dimension (LDAFAC,N)
 | 
						|
*>          The factored form of the matrix A.  AFAC contains the factors
 | 
						|
*>          L and U from the L*U factorization as computed by CGETRF.
 | 
						|
*>          Overwritten with the reconstructed matrix, and then with the
 | 
						|
*>          difference L*U - A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFAC
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFAC is INTEGER
 | 
						|
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices from CGETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          norm(L*U - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDAFAC, M, N
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, K
 | 
						|
      REAL               ANORM, EPS
 | 
						|
      COMPLEX            T
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANGE, SLAMCH
 | 
						|
      COMPLEX            CDOTU
 | 
						|
      EXTERNAL           CLANGE, SLAMCH, CDOTU
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, CLASWP, CSCAL, CTRMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if M = 0 or N = 0.
 | 
						|
*
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine EPS and the norm of A.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
 | 
						|
*
 | 
						|
*     Compute the product L*U and overwrite AFAC with the result.
 | 
						|
*     A column at a time of the product is obtained, starting with
 | 
						|
*     column N.
 | 
						|
*
 | 
						|
      DO 10 K = N, 1, -1
 | 
						|
         IF( K.GT.M ) THEN
 | 
						|
            CALL CTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
 | 
						|
     $                  LDAFAC, AFAC( 1, K ), 1 )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute elements (K+1:M,K)
 | 
						|
*
 | 
						|
            T = AFAC( K, K )
 | 
						|
            IF( K+1.LE.M ) THEN
 | 
						|
               CALL CSCAL( M-K, T, AFAC( K+1, K ), 1 )
 | 
						|
               CALL CGEMV( 'No transpose', M-K, K-1, CONE,
 | 
						|
     $                     AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1, 
 | 
						|
     $                     CONE, AFAC( K+1, K ), 1 )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute the (K,K) element
 | 
						|
*
 | 
						|
            AFAC( K, K ) = T + CDOTU( K-1, AFAC( K, 1 ), LDAFAC,
 | 
						|
     $                     AFAC( 1, K ), 1 )
 | 
						|
*
 | 
						|
*           Compute elements (1:K-1,K)
 | 
						|
*
 | 
						|
            CALL CTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
 | 
						|
     $                  LDAFAC, AFAC( 1, K ), 1 )
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
      CALL CLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
 | 
						|
*
 | 
						|
*     Compute the difference  L*U - A  and store in AFAC.
 | 
						|
*
 | 
						|
      DO 30 J = 1, N
 | 
						|
         DO 20 I = 1, M
 | 
						|
            AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | 
						|
   20    CONTINUE
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      RESID = CLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGET01
 | 
						|
*
 | 
						|
      END
 |