281 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZSPR performs the symmetrical rank-1 update of a complex symmetric packed matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZSPR + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspr.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspr.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspr.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZSPR( UPLO, N, ALPHA, X, INCX, AP )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INCX, N
 | 
						|
*       COMPLEX*16         ALPHA
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         AP( * ), X( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZSPR    performs the symmetric rank 1 operation
 | 
						|
*>
 | 
						|
*>    A := alpha*x*x**H + A,
 | 
						|
*>
 | 
						|
*> where alpha is a complex scalar, x is an n element vector and A is an
 | 
						|
*> n by n symmetric matrix, supplied in packed form.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the upper or lower
 | 
						|
*>           triangular part of the matrix A is supplied in the packed
 | 
						|
*>           array AP as follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | 
						|
*>                                  supplied in AP.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | 
						|
*>                                  supplied in AP.
 | 
						|
*>
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension at least
 | 
						|
*>           ( 1 + ( N - 1 )*abs( INCX ) ).
 | 
						|
*>           Before entry, the incremented array X must contain the N-
 | 
						|
*>           element vector x.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX*16 array, dimension at least
 | 
						|
*>           ( ( N*( N + 1 ) )/2 ).
 | 
						|
*>           Before entry, with  UPLO = 'U' or 'u', the array AP must
 | 
						|
*>           contain the upper triangular part of the symmetric matrix
 | 
						|
*>           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | 
						|
*>           and a( 2, 2 ) respectively, and so on. On exit, the array
 | 
						|
*>           AP is overwritten by the upper triangular part of the
 | 
						|
*>           updated matrix.
 | 
						|
*>           Before entry, with UPLO = 'L' or 'l', the array AP must
 | 
						|
*>           contain the lower triangular part of the symmetric matrix
 | 
						|
*>           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | 
						|
*>           and a( 3, 1 ) respectively, and so on. On exit, the array
 | 
						|
*>           AP is overwritten by the lower triangular part of the
 | 
						|
*>           updated matrix.
 | 
						|
*>           Note that the imaginary parts of the diagonal elements need
 | 
						|
*>           not be set, they are assumed to be zero, and on exit they
 | 
						|
*>           are set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZSPR( UPLO, N, ALPHA, X, INCX, AP )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INCX, N
 | 
						|
      COMPLEX*16         ALPHA
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         AP( * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, IX, J, JX, K, KK, KX
 | 
						|
      COMPLEX*16         TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( INCX.EQ.0 ) THEN
 | 
						|
         INFO = 5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZSPR  ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set the start point in X if the increment is not unity.
 | 
						|
*
 | 
						|
      IF( INCX.LE.0 ) THEN
 | 
						|
         KX = 1 - ( N-1 )*INCX
 | 
						|
      ELSE IF( INCX.NE.1 ) THEN
 | 
						|
         KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of the array AP
 | 
						|
*     are accessed sequentially with one pass through AP.
 | 
						|
*
 | 
						|
      KK = 1
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*        Form  A  when upper triangle is stored in AP.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 ) THEN
 | 
						|
            DO 20 J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( J )
 | 
						|
                  K = KK
 | 
						|
                  DO 10 I = 1, J - 1
 | 
						|
                     AP( K ) = AP( K ) + X( I )*TEMP
 | 
						|
                     K = K + 1
 | 
						|
   10             CONTINUE
 | 
						|
                  AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP
 | 
						|
               ELSE
 | 
						|
                  AP( KK+J-1 ) = AP( KK+J-1 )
 | 
						|
               END IF
 | 
						|
               KK = KK + J
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 40 J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( JX )
 | 
						|
                  IX = KX
 | 
						|
                  DO 30 K = KK, KK + J - 2
 | 
						|
                     AP( K ) = AP( K ) + X( IX )*TEMP
 | 
						|
                     IX = IX + INCX
 | 
						|
   30             CONTINUE
 | 
						|
                  AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP
 | 
						|
               ELSE
 | 
						|
                  AP( KK+J-1 ) = AP( KK+J-1 )
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
               KK = KK + J
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  A  when lower triangle is stored in AP.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 ) THEN
 | 
						|
            DO 60 J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( J )
 | 
						|
                  AP( KK ) = AP( KK ) + TEMP*X( J )
 | 
						|
                  K = KK + 1
 | 
						|
                  DO 50 I = J + 1, N
 | 
						|
                     AP( K ) = AP( K ) + X( I )*TEMP
 | 
						|
                     K = K + 1
 | 
						|
   50             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  AP( KK ) = AP( KK )
 | 
						|
               END IF
 | 
						|
               KK = KK + N - J + 1
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 80 J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO ) THEN
 | 
						|
                  TEMP = ALPHA*X( JX )
 | 
						|
                  AP( KK ) = AP( KK ) + TEMP*X( JX )
 | 
						|
                  IX = JX
 | 
						|
                  DO 70 K = KK + 1, KK + N - J
 | 
						|
                     IX = IX + INCX
 | 
						|
                     AP( K ) = AP( K ) + X( IX )*TEMP
 | 
						|
   70             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  AP( KK ) = AP( KK )
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
               KK = KK + N - J + 1
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZSPR
 | 
						|
*
 | 
						|
      END
 |