772 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			772 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
/*********************************************************************/
 | 
						|
/* Copyright 2009, 2010 The University of Texas at Austin.           */
 | 
						|
/* All rights reserved.                                              */
 | 
						|
/*                                                                   */
 | 
						|
/* Redistribution and use in source and binary forms, with or        */
 | 
						|
/* without modification, are permitted provided that the following   */
 | 
						|
/* conditions are met:                                               */
 | 
						|
/*                                                                   */
 | 
						|
/*   1. Redistributions of source code must retain the above         */
 | 
						|
/*      copyright notice, this list of conditions and the following  */
 | 
						|
/*      disclaimer.                                                  */
 | 
						|
/*                                                                   */
 | 
						|
/*   2. Redistributions in binary form must reproduce the above      */
 | 
						|
/*      copyright notice, this list of conditions and the following  */
 | 
						|
/*      disclaimer in the documentation and/or other materials       */
 | 
						|
/*      provided with the distribution.                              */
 | 
						|
/*                                                                   */
 | 
						|
/*    THIS  SOFTWARE IS PROVIDED  BY THE  UNIVERSITY OF  TEXAS AT    */
 | 
						|
/*    AUSTIN  ``AS IS''  AND ANY  EXPRESS OR  IMPLIED WARRANTIES,    */
 | 
						|
/*    INCLUDING, BUT  NOT LIMITED  TO, THE IMPLIED  WARRANTIES OF    */
 | 
						|
/*    MERCHANTABILITY  AND FITNESS FOR  A PARTICULAR  PURPOSE ARE    */
 | 
						|
/*    DISCLAIMED.  IN  NO EVENT SHALL THE UNIVERSITY  OF TEXAS AT    */
 | 
						|
/*    AUSTIN OR CONTRIBUTORS BE  LIABLE FOR ANY DIRECT, INDIRECT,    */
 | 
						|
/*    INCIDENTAL,  SPECIAL, EXEMPLARY,  OR  CONSEQUENTIAL DAMAGES    */
 | 
						|
/*    (INCLUDING, BUT  NOT LIMITED TO,  PROCUREMENT OF SUBSTITUTE    */
 | 
						|
/*    GOODS  OR  SERVICES; LOSS  OF  USE,  DATA,  OR PROFITS;  OR    */
 | 
						|
/*    BUSINESS INTERRUPTION) HOWEVER CAUSED  AND ON ANY THEORY OF    */
 | 
						|
/*    LIABILITY, WHETHER  IN CONTRACT, STRICT  LIABILITY, OR TORT    */
 | 
						|
/*    (INCLUDING NEGLIGENCE OR OTHERWISE)  ARISING IN ANY WAY OUT    */
 | 
						|
/*    OF  THE  USE OF  THIS  SOFTWARE,  EVEN  IF ADVISED  OF  THE    */
 | 
						|
/*    POSSIBILITY OF SUCH DAMAGE.                                    */
 | 
						|
/*                                                                   */
 | 
						|
/* The views and conclusions contained in the software and           */
 | 
						|
/* documentation are those of the authors and should not be          */
 | 
						|
/* interpreted as representing official policies, either expressed   */
 | 
						|
/* or implied, of The University of Texas at Austin.                 */
 | 
						|
/*********************************************************************/
 | 
						|
 | 
						|
#ifndef CACHE_LINE_SIZE
 | 
						|
#define CACHE_LINE_SIZE 8
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef DIVIDE_RATE
 | 
						|
#define DIVIDE_RATE 2
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef SWITCH_RATIO
 | 
						|
#define SWITCH_RATIO 2
 | 
						|
#endif
 | 
						|
 | 
						|
//The array of job_t may overflow the stack.
 | 
						|
//Instead, use malloc to alloc job_t.
 | 
						|
#if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
 | 
						|
#define USE_ALLOC_HEAP
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef GEMM_LOCAL
 | 
						|
#if   defined(NN)
 | 
						|
#define GEMM_LOCAL    GEMM_NN
 | 
						|
#elif defined(NT)
 | 
						|
#define GEMM_LOCAL    GEMM_NT
 | 
						|
#elif defined(NR)
 | 
						|
#define GEMM_LOCAL    GEMM_NR
 | 
						|
#elif defined(NC)
 | 
						|
#define GEMM_LOCAL    GEMM_NC
 | 
						|
#elif defined(TN)
 | 
						|
#define GEMM_LOCAL    GEMM_TN
 | 
						|
#elif defined(TT)
 | 
						|
#define GEMM_LOCAL    GEMM_TT
 | 
						|
#elif defined(TR)
 | 
						|
#define GEMM_LOCAL    GEMM_TR
 | 
						|
#elif defined(TC)
 | 
						|
#define GEMM_LOCAL    GEMM_TC
 | 
						|
#elif defined(RN)
 | 
						|
#define GEMM_LOCAL    GEMM_RN
 | 
						|
#elif defined(RT)
 | 
						|
#define GEMM_LOCAL    GEMM_RT
 | 
						|
#elif defined(RR)
 | 
						|
#define GEMM_LOCAL    GEMM_RR
 | 
						|
#elif defined(RC)
 | 
						|
#define GEMM_LOCAL    GEMM_RC
 | 
						|
#elif defined(CN)
 | 
						|
#define GEMM_LOCAL    GEMM_CN
 | 
						|
#elif defined(CT)
 | 
						|
#define GEMM_LOCAL    GEMM_CT
 | 
						|
#elif defined(CR)
 | 
						|
#define GEMM_LOCAL    GEMM_CR
 | 
						|
#elif defined(CC)
 | 
						|
#define GEMM_LOCAL    GEMM_CC
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
 | 
						|
} job_t;
 | 
						|
 | 
						|
 | 
						|
#ifndef BETA_OPERATION
 | 
						|
#ifndef COMPLEX
 | 
						|
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
 | 
						|
	GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
 | 
						|
		  BETA[0], NULL, 0, NULL, 0, \
 | 
						|
		  (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
 | 
						|
#else
 | 
						|
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
 | 
						|
	GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
 | 
						|
		  BETA[0], BETA[1], NULL, 0, NULL, 0, \
 | 
						|
		  (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef ICOPY_OPERATION
 | 
						|
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
 | 
						|
    defined(RN) || defined(RT) || defined(RC) || defined(RR)
 | 
						|
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | 
						|
#else
 | 
						|
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef OCOPY_OPERATION
 | 
						|
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
 | 
						|
    defined(NR) || defined(TR) || defined(CR) || defined(RR)
 | 
						|
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | 
						|
#else
 | 
						|
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef KERNEL_FUNC
 | 
						|
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
 | 
						|
#define KERNEL_FUNC	GEMM_KERNEL_N
 | 
						|
#endif
 | 
						|
#if defined(CN) || defined(CT) || defined(RN) || defined(RT)
 | 
						|
#define KERNEL_FUNC	GEMM_KERNEL_L
 | 
						|
#endif
 | 
						|
#if defined(NC) || defined(TC) || defined(NR) || defined(TR)
 | 
						|
#define KERNEL_FUNC	GEMM_KERNEL_R
 | 
						|
#endif
 | 
						|
#if defined(CC) || defined(CR) || defined(RC) || defined(RR)
 | 
						|
#define KERNEL_FUNC	GEMM_KERNEL_B
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef KERNEL_OPERATION
 | 
						|
#ifndef COMPLEX
 | 
						|
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
 | 
						|
	KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
 | 
						|
#else
 | 
						|
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
 | 
						|
	KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef FUSED_KERNEL_OPERATION
 | 
						|
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
 | 
						|
    defined(NR) || defined(TR) || defined(CR) || defined(RR)
 | 
						|
#ifndef COMPLEX
 | 
						|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
 | 
						|
	FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
 | 
						|
	(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
 | 
						|
#else
 | 
						|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
 | 
						|
	FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
 | 
						|
	(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
 | 
						|
 | 
						|
#endif
 | 
						|
#else
 | 
						|
#ifndef COMPLEX
 | 
						|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
 | 
						|
	FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
 | 
						|
	(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
 | 
						|
#else
 | 
						|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
 | 
						|
	FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
 | 
						|
	(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef A
 | 
						|
#define A	args -> a
 | 
						|
#endif
 | 
						|
#ifndef LDA
 | 
						|
#define LDA	args -> lda
 | 
						|
#endif
 | 
						|
#ifndef B
 | 
						|
#define B	args -> b
 | 
						|
#endif
 | 
						|
#ifndef LDB
 | 
						|
#define LDB	args -> ldb
 | 
						|
#endif
 | 
						|
#ifndef C
 | 
						|
#define C	args -> c
 | 
						|
#endif
 | 
						|
#ifndef LDC
 | 
						|
#define LDC	args -> ldc
 | 
						|
#endif
 | 
						|
#ifndef M
 | 
						|
#define M	args -> m
 | 
						|
#endif
 | 
						|
#ifndef N
 | 
						|
#define N	args -> n
 | 
						|
#endif
 | 
						|
#ifndef K
 | 
						|
#define K	args -> k
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef TIMING
 | 
						|
#define START_RPCC()		rpcc_counter = rpcc()
 | 
						|
#define STOP_RPCC(COUNTER)	COUNTER  += rpcc() - rpcc_counter
 | 
						|
#else
 | 
						|
#define START_RPCC()
 | 
						|
#define STOP_RPCC(COUNTER)
 | 
						|
#endif
 | 
						|
 | 
						|
static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
 | 
						|
 | 
						|
  FLOAT *buffer[DIVIDE_RATE];
 | 
						|
 | 
						|
  BLASLONG k, lda, ldb, ldc;
 | 
						|
  BLASLONG m_from, m_to, n_from, n_to, N_from, N_to;
 | 
						|
 | 
						|
  FLOAT *alpha, *beta;
 | 
						|
  FLOAT *a, *b, *c;
 | 
						|
  job_t *job = (job_t *)args -> common;
 | 
						|
  BLASLONG xxx, bufferside;
 | 
						|
 | 
						|
  BLASLONG ls, min_l, jjs, min_jj;
 | 
						|
  BLASLONG is, min_i, div_n;
 | 
						|
 | 
						|
  BLASLONG i, current;
 | 
						|
  BLASLONG l1stride, l2size;
 | 
						|
 | 
						|
#ifdef TIMING
 | 
						|
  BLASULONG rpcc_counter;
 | 
						|
  BLASULONG copy_A = 0;
 | 
						|
  BLASULONG copy_B = 0;
 | 
						|
  BLASULONG kernel = 0;
 | 
						|
  BLASULONG waiting1 = 0;
 | 
						|
  BLASULONG waiting2 = 0;
 | 
						|
  BLASULONG waiting3 = 0;
 | 
						|
  BLASULONG waiting6[MAX_CPU_NUMBER];
 | 
						|
  BLASULONG ops    = 0;
 | 
						|
 | 
						|
  for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  k = K;
 | 
						|
 | 
						|
  a = (FLOAT *)A;
 | 
						|
  b = (FLOAT *)B;
 | 
						|
  c = (FLOAT *)C;
 | 
						|
 | 
						|
  lda = LDA;
 | 
						|
  ldb = LDB;
 | 
						|
  ldc = LDC;
 | 
						|
 | 
						|
  alpha = (FLOAT *)args -> alpha;
 | 
						|
  beta  = (FLOAT *)args -> beta;
 | 
						|
 | 
						|
  m_from = 0;
 | 
						|
  m_to   = M;
 | 
						|
 | 
						|
  if (range_m) {
 | 
						|
    m_from = range_m[0];
 | 
						|
    m_to   = range_m[1];
 | 
						|
  }
 | 
						|
 | 
						|
  n_from = 0;
 | 
						|
  n_to   = N;
 | 
						|
 | 
						|
  N_from = 0;
 | 
						|
  N_to   = N;
 | 
						|
 | 
						|
  if (range_n) {
 | 
						|
    n_from = range_n[mypos + 0];
 | 
						|
    n_to   = range_n[mypos + 1];
 | 
						|
 | 
						|
    N_from = range_n[0];
 | 
						|
    N_to   = range_n[args -> nthreads];
 | 
						|
  }
 | 
						|
 | 
						|
  if (beta) {
 | 
						|
#ifndef COMPLEX
 | 
						|
    if (beta[0] != ONE)
 | 
						|
#else
 | 
						|
    if ((beta[0] != ONE) || (beta[1] != ZERO))
 | 
						|
#endif
 | 
						|
      BETA_OPERATION(m_from, m_to, N_from, N_to, beta, c, ldc);
 | 
						|
  }
 | 
						|
 | 
						|
  if ((k == 0) || (alpha == NULL)) return 0;
 | 
						|
 | 
						|
  if ((alpha[0] == ZERO)
 | 
						|
#ifdef COMPLEX
 | 
						|
      && (alpha[1] == ZERO)
 | 
						|
#endif
 | 
						|
      ) return 0;
 | 
						|
 | 
						|
  l2size = GEMM_P * GEMM_Q;
 | 
						|
 | 
						|
#if 0
 | 
						|
  fprintf(stderr, "Thread[%ld]  m_from : %ld m_to : %ld n_from : %ld n_to : %ld N_from : %ld N_to : %ld\n",
 | 
						|
	  mypos, m_from, m_to, n_from, n_to, N_from, N_to);
 | 
						|
 | 
						|
  fprintf(stderr, "GEMM: P = %4ld  Q = %4ld  R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
  div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
 | 
						|
 | 
						|
  buffer[0] = sb;
 | 
						|
  for (i = 1; i < DIVIDE_RATE; i++) {
 | 
						|
    buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  for(ls = 0; ls < k; ls += min_l){
 | 
						|
 | 
						|
    min_l = k - ls;
 | 
						|
 | 
						|
    if (min_l >= GEMM_Q * 2) {
 | 
						|
      min_l  = GEMM_Q;
 | 
						|
    } else {
 | 
						|
      if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
 | 
						|
    }
 | 
						|
 | 
						|
    l1stride = 1;
 | 
						|
    min_i = m_to - m_from;
 | 
						|
 | 
						|
    if (min_i >= GEMM_P * 2) {
 | 
						|
      min_i = GEMM_P;
 | 
						|
    } else {
 | 
						|
      if (min_i > GEMM_P) {
 | 
						|
	min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
 | 
						|
      } else {
 | 
						|
	if (args -> nthreads == 1) l1stride = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    START_RPCC();
 | 
						|
 | 
						|
    ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
 | 
						|
 | 
						|
    STOP_RPCC(copy_A);
 | 
						|
 | 
						|
    div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
 | 
						|
 | 
						|
    for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
 | 
						|
 | 
						|
      START_RPCC();
 | 
						|
 | 
						|
      /* Make sure if no one is using buffer */
 | 
						|
      for (i = 0; i < args -> nthreads; i++)
 | 
						|
	while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
 | 
						|
 | 
						|
      STOP_RPCC(waiting1);
 | 
						|
 | 
						|
#if defined(FUSED_GEMM) && !defined(TIMING)
 | 
						|
 | 
						|
      FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha,
 | 
						|
			     sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls);
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
      for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
 | 
						|
	min_jj = MIN(n_to, xxx + div_n) - jjs;
 | 
						|
 | 
						|
	if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
 | 
						|
	else
 | 
						|
		if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
 | 
						|
 | 
						|
 | 
						|
	START_RPCC();
 | 
						|
 | 
						|
	OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
 | 
						|
			buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride);
 | 
						|
 | 
						|
	STOP_RPCC(copy_B);
 | 
						|
 | 
						|
	START_RPCC();
 | 
						|
 | 
						|
	KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
 | 
						|
			 sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride,
 | 
						|
			 c, ldc, m_from, jjs);
 | 
						|
 | 
						|
	STOP_RPCC(kernel);
 | 
						|
 | 
						|
#ifdef TIMING
 | 
						|
	  ops += 2 * min_i * min_jj * min_l;
 | 
						|
#endif
 | 
						|
 | 
						|
      }
 | 
						|
#endif
 | 
						|
 | 
						|
      for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
 | 
						|
      WMB;
 | 
						|
    }
 | 
						|
 | 
						|
    current = mypos;
 | 
						|
 | 
						|
    do {
 | 
						|
      current ++;
 | 
						|
      if (current >= args -> nthreads) current = 0;
 | 
						|
 | 
						|
      div_n = (range_n[current + 1]  - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
 | 
						|
 | 
						|
      for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
 | 
						|
 | 
						|
	if (current != mypos) {
 | 
						|
 | 
						|
	  START_RPCC();
 | 
						|
 | 
						|
	  /* thread has to wait */
 | 
						|
	  while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
 | 
						|
 | 
						|
	  STOP_RPCC(waiting2);
 | 
						|
 | 
						|
	  START_RPCC();
 | 
						|
 | 
						|
	  KERNEL_OPERATION(min_i, MIN(range_n[current + 1]  - xxx,  div_n), min_l, alpha,
 | 
						|
			   sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
 | 
						|
			   c, ldc, m_from, xxx);
 | 
						|
 | 
						|
	STOP_RPCC(kernel);
 | 
						|
#ifdef TIMING
 | 
						|
	  ops += 2 * min_i * MIN(range_n[current + 1]  - xxx,  div_n) * min_l;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	if (m_to - m_from == min_i) {
 | 
						|
	  job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
 | 
						|
	}
 | 
						|
      }
 | 
						|
    } while (current != mypos);
 | 
						|
 | 
						|
 | 
						|
    for(is = m_from + min_i; is < m_to; is += min_i){
 | 
						|
      min_i = m_to - is;
 | 
						|
 | 
						|
      if (min_i >= GEMM_P * 2) {
 | 
						|
	min_i = GEMM_P;
 | 
						|
      } else
 | 
						|
	if (min_i > GEMM_P) {
 | 
						|
	  min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
 | 
						|
	}
 | 
						|
 | 
						|
      START_RPCC();
 | 
						|
 | 
						|
      ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
 | 
						|
 | 
						|
      STOP_RPCC(copy_A);
 | 
						|
 | 
						|
      current = mypos;
 | 
						|
      do {
 | 
						|
 | 
						|
	div_n = (range_n[current + 1]  - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
 | 
						|
 | 
						|
	for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
 | 
						|
 | 
						|
	  START_RPCC();
 | 
						|
 | 
						|
	  KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
 | 
						|
			   sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
 | 
						|
			   c, ldc, is, xxx);
 | 
						|
 | 
						|
	STOP_RPCC(kernel);
 | 
						|
 | 
						|
#ifdef TIMING
 | 
						|
	ops += 2 * min_i * MIN(range_n[current + 1]  - xxx, div_n) * min_l;
 | 
						|
#endif
 | 
						|
 | 
						|
	if (is + min_i >= m_to) {
 | 
						|
	  /* Thread doesn't need this buffer any more */
 | 
						|
	  job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
 | 
						|
	  WMB;
 | 
						|
	}
 | 
						|
	}
 | 
						|
 | 
						|
	current ++;
 | 
						|
	if (current >= args -> nthreads) current = 0;
 | 
						|
 | 
						|
      } while (current != mypos);
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  START_RPCC();
 | 
						|
 | 
						|
  for (i = 0; i < args -> nthreads; i++) {
 | 
						|
    for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
 | 
						|
      while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  STOP_RPCC(waiting3);
 | 
						|
 | 
						|
#ifdef TIMING
 | 
						|
  BLASLONG waiting = waiting1 + waiting2 + waiting3;
 | 
						|
  BLASLONG total = copy_A + copy_B + kernel + waiting;
 | 
						|
 | 
						|
  fprintf(stderr, "GEMM   [%2ld] Copy_A : %6.2f  Copy_B : %6.2f  Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
 | 
						|
	  mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
 | 
						|
	  (double)waiting1 /(double)total * 100.,
 | 
						|
	  (double)waiting2 /(double)total * 100.,
 | 
						|
	  (double)waiting3 /(double)total * 100.,
 | 
						|
	  (double)ops/(double)kernel / 4. * 100.);
 | 
						|
 | 
						|
#if 0
 | 
						|
  fprintf(stderr, "GEMM   [%2ld] Copy_A : %6.2ld  Copy_B : %6.2ld  Wait : %6.2ld\n",
 | 
						|
	  mypos, copy_A, copy_B, waiting);
 | 
						|
 | 
						|
  fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
 | 
						|
	  mypos,
 | 
						|
	  (double)waiting1/(double)waiting * 100.,
 | 
						|
	  (double)waiting2/(double)waiting * 100.,
 | 
						|
	  (double)waiting3/(double)waiting * 100.);
 | 
						|
#endif
 | 
						|
  fprintf(stderr, "\n");
 | 
						|
#endif
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
 | 
						|
		       *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
 | 
						|
 | 
						|
  blas_arg_t newarg;
 | 
						|
 | 
						|
#ifndef USE_ALLOC_HEAP
 | 
						|
  job_t          job[MAX_CPU_NUMBER];
 | 
						|
#else
 | 
						|
  job_t *        job = NULL;
 | 
						|
#endif
 | 
						|
 | 
						|
  blas_queue_t queue[MAX_CPU_NUMBER];
 | 
						|
 | 
						|
  BLASLONG range_M[MAX_CPU_NUMBER + 1];
 | 
						|
  BLASLONG range_N[MAX_CPU_NUMBER + 1];
 | 
						|
 | 
						|
  BLASLONG num_cpu_m, num_cpu_n;
 | 
						|
 | 
						|
  BLASLONG nthreads = args -> nthreads;
 | 
						|
 | 
						|
  BLASLONG width, i, j, k, js;
 | 
						|
  BLASLONG m, n, n_from, n_to;
 | 
						|
  int  mode;
 | 
						|
 | 
						|
#ifndef COMPLEX
 | 
						|
#ifdef XDOUBLE
 | 
						|
  mode  =  BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
 | 
						|
#elif defined(DOUBLE)
 | 
						|
  mode  =  BLAS_DOUBLE  | BLAS_REAL | BLAS_NODE;
 | 
						|
#else
 | 
						|
  mode  =  BLAS_SINGLE  | BLAS_REAL | BLAS_NODE;
 | 
						|
#endif
 | 
						|
#else
 | 
						|
#ifdef XDOUBLE
 | 
						|
  mode  =  BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE;
 | 
						|
#elif defined(DOUBLE)
 | 
						|
  mode  =  BLAS_DOUBLE  | BLAS_COMPLEX | BLAS_NODE;
 | 
						|
#else
 | 
						|
  mode  =  BLAS_SINGLE  | BLAS_COMPLEX | BLAS_NODE;
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
  newarg.m        = args -> m;
 | 
						|
  newarg.n        = args -> n;
 | 
						|
  newarg.k        = args -> k;
 | 
						|
  newarg.a        = args -> a;
 | 
						|
  newarg.b        = args -> b;
 | 
						|
  newarg.c        = args -> c;
 | 
						|
  newarg.lda      = args -> lda;
 | 
						|
  newarg.ldb      = args -> ldb;
 | 
						|
  newarg.ldc      = args -> ldc;
 | 
						|
  newarg.alpha    = args -> alpha;
 | 
						|
  newarg.beta     = args -> beta;
 | 
						|
  newarg.nthreads = args -> nthreads;
 | 
						|
 | 
						|
#ifdef USE_ALLOC_HEAP
 | 
						|
  job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
 | 
						|
  if(job==NULL){
 | 
						|
    fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  newarg.common   = (void *)job;
 | 
						|
 | 
						|
#ifdef PARAMTEST
 | 
						|
  newarg.gemm_p  = args -> gemm_p;
 | 
						|
  newarg.gemm_q  = args -> gemm_q;
 | 
						|
  newarg.gemm_r  = args -> gemm_r;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (!range_m) {
 | 
						|
    range_M[0] = 0;
 | 
						|
    m          = args -> m;
 | 
						|
  } else {
 | 
						|
    range_M[0] = range_m[0];
 | 
						|
    m          = range_m[1] - range_m[0];
 | 
						|
  }
 | 
						|
 | 
						|
  num_cpu_m  = 0;
 | 
						|
 | 
						|
  while (m > 0){
 | 
						|
 | 
						|
    width  = blas_quickdivide(m + nthreads - num_cpu_m - 1, nthreads - num_cpu_m);
 | 
						|
 | 
						|
    m -= width;
 | 
						|
    if (m < 0) width = width + m;
 | 
						|
 | 
						|
    range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width;
 | 
						|
 | 
						|
    num_cpu_m ++;
 | 
						|
  }
 | 
						|
 | 
						|
  for (i = 0; i < num_cpu_m; i++) {
 | 
						|
    queue[i].mode    = mode;
 | 
						|
    queue[i].routine = inner_thread;
 | 
						|
    queue[i].args    = &newarg;
 | 
						|
    queue[i].range_m = &range_M[i];
 | 
						|
    queue[i].range_n = &range_N[0];
 | 
						|
    queue[i].sa      = NULL;
 | 
						|
    queue[i].sb      = NULL;
 | 
						|
    queue[i].next    = &queue[i + 1];
 | 
						|
  }
 | 
						|
 | 
						|
  queue[0].sa = sa;
 | 
						|
  queue[0].sb = sb;
 | 
						|
 | 
						|
  if (!range_n) {
 | 
						|
    n_from = 0;
 | 
						|
    n_to   = args -> n;
 | 
						|
  } else {
 | 
						|
    n_from = range_n[0];
 | 
						|
    n_to   = range_n[1];
 | 
						|
  }
 | 
						|
 | 
						|
  for(js = n_from; js < n_to; js += GEMM_R * nthreads){
 | 
						|
    n = n_to - js;
 | 
						|
    if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
 | 
						|
 | 
						|
    range_N[0] = js;
 | 
						|
 | 
						|
    num_cpu_n  = 0;
 | 
						|
 | 
						|
    while (n > 0){
 | 
						|
 | 
						|
      width  = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n);
 | 
						|
 | 
						|
      n -= width;
 | 
						|
      if (n < 0) width = width + n;
 | 
						|
 | 
						|
      range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width;
 | 
						|
 | 
						|
      num_cpu_n ++;
 | 
						|
    }
 | 
						|
 | 
						|
    for (j = 0; j < num_cpu_m; j++) {
 | 
						|
      for (i = 0; i < num_cpu_m; i++) {
 | 
						|
	for (k = 0; k < DIVIDE_RATE; k++) {
 | 
						|
	  job[j].working[i][CACHE_LINE_SIZE * k] = 0;
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    queue[num_cpu_m - 1].next = NULL;
 | 
						|
 | 
						|
    exec_blas(num_cpu_m, queue);
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef USE_ALLOC_HEAP
 | 
						|
  free(job);
 | 
						|
#endif
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
 | 
						|
 | 
						|
  BLASLONG m = args -> m;
 | 
						|
  BLASLONG n = args -> n;
 | 
						|
  BLASLONG nthreads = args -> nthreads;
 | 
						|
  BLASLONG divN, divT;
 | 
						|
  int mode;
 | 
						|
 | 
						|
  if (nthreads  == 1) {
 | 
						|
    GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (range_m) {
 | 
						|
    BLASLONG m_from = *(((BLASLONG *)range_m) + 0);
 | 
						|
    BLASLONG m_to   = *(((BLASLONG *)range_m) + 1);
 | 
						|
 | 
						|
    m = m_to - m_from;
 | 
						|
  }
 | 
						|
 | 
						|
  if (range_n) {
 | 
						|
    BLASLONG n_from = *(((BLASLONG *)range_n) + 0);
 | 
						|
    BLASLONG n_to   = *(((BLASLONG *)range_n) + 1);
 | 
						|
 | 
						|
    n = n_to - n_from;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((args -> m < nthreads * SWITCH_RATIO) || (args -> n < nthreads * SWITCH_RATIO)) {
 | 
						|
    GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  divT = nthreads;
 | 
						|
  divN = 1;
 | 
						|
 | 
						|
#if 0
 | 
						|
  while ((GEMM_P * divT > m * SWITCH_RATIO) && (divT > 1)) {
 | 
						|
    do {
 | 
						|
      divT --;
 | 
						|
      divN = 1;
 | 
						|
      while (divT * divN < nthreads) divN ++;
 | 
						|
    } while ((divT * divN != nthreads) && (divT > 1));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // fprintf(stderr, "divN = %4ld  divT = %4ld\n", divN, divT);
 | 
						|
 | 
						|
  args -> nthreads = divT;
 | 
						|
 | 
						|
  if (divN == 1){
 | 
						|
 | 
						|
    gemm_driver(args, range_m, range_n, sa, sb, 0);
 | 
						|
  } else {
 | 
						|
#ifndef COMPLEX
 | 
						|
#ifdef XDOUBLE
 | 
						|
    mode  =  BLAS_XDOUBLE | BLAS_REAL;
 | 
						|
#elif defined(DOUBLE)
 | 
						|
    mode  =  BLAS_DOUBLE  | BLAS_REAL;
 | 
						|
#else
 | 
						|
    mode  =  BLAS_SINGLE  | BLAS_REAL;
 | 
						|
#endif
 | 
						|
#else
 | 
						|
#ifdef XDOUBLE
 | 
						|
    mode  =  BLAS_XDOUBLE | BLAS_COMPLEX;
 | 
						|
#elif defined(DOUBLE)
 | 
						|
    mode  =  BLAS_DOUBLE  | BLAS_COMPLEX;
 | 
						|
#else
 | 
						|
    mode  =  BLAS_SINGLE  | BLAS_COMPLEX;
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(TN) || defined(TT) || defined(TR) || defined(TC) || \
 | 
						|
    defined(CN) || defined(CT) || defined(CR) || defined(CC)
 | 
						|
    mode |= (BLAS_TRANSA_T);
 | 
						|
#endif
 | 
						|
#if defined(NT) || defined(TT) || defined(RT) || defined(CT) || \
 | 
						|
    defined(NC) || defined(TC) || defined(RC) || defined(CC)
 | 
						|
    mode |= (BLAS_TRANSB_T);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef OS_WINDOWS
 | 
						|
    gemm_thread_n(mode, args, range_m, range_n, GEMM_LOCAL,  sa, sb, divN);
 | 
						|
#else
 | 
						|
    gemm_thread_n(mode, args, range_m, range_n, gemm_driver, sa, sb, divN);
 | 
						|
#endif
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 |