1363 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1363 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DDRVSG2STG
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
| *                              NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
 | |
| *                              BB, AP, BP, WORK, NWORK, IWORK, LIWORK, 
 | |
| *                              RESULT, INFO )
 | |
| *
 | |
| *       IMPLICIT NONE
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
 | |
| *      $                   NTYPES, NWORK
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AB( LDA, * ), AP( * ),
 | |
| *      $                   B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
 | |
| *      $                   RESULT( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>      DDRVSG2STG checks the real symmetric generalized eigenproblem
 | |
| *>      drivers.
 | |
| *>
 | |
| *>              DSYGV computes all eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite generalized
 | |
| *>              eigenproblem.
 | |
| *>
 | |
| *>              DSYGVD computes all eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite generalized
 | |
| *>              eigenproblem using a divide and conquer algorithm.
 | |
| *>
 | |
| *>              DSYGVX computes selected eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite generalized
 | |
| *>              eigenproblem.
 | |
| *>
 | |
| *>              DSPGV computes all eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite generalized
 | |
| *>              eigenproblem in packed storage.
 | |
| *>
 | |
| *>              DSPGVD computes all eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite generalized
 | |
| *>              eigenproblem in packed storage using a divide and
 | |
| *>              conquer algorithm.
 | |
| *>
 | |
| *>              DSPGVX computes selected eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite generalized
 | |
| *>              eigenproblem in packed storage.
 | |
| *>
 | |
| *>              DSBGV computes all eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite banded
 | |
| *>              generalized eigenproblem.
 | |
| *>
 | |
| *>              DSBGVD computes all eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite banded
 | |
| *>              generalized eigenproblem using a divide and conquer
 | |
| *>              algorithm.
 | |
| *>
 | |
| *>              DSBGVX computes selected eigenvalues and, optionally,
 | |
| *>              eigenvectors of a real symmetric-definite banded
 | |
| *>              generalized eigenproblem.
 | |
| *>
 | |
| *>      When DDRVSG2STG is called, a number of matrix "sizes" ("n's") and a
 | |
| *>      number of matrix "types" are specified.  For each size ("n")
 | |
| *>      and each type of matrix, one matrix A of the given type will be
 | |
| *>      generated; a random well-conditioned matrix B is also generated
 | |
| *>      and the pair (A,B) is used to test the drivers.
 | |
| *>
 | |
| *>      For each pair (A,B), the following tests are performed:
 | |
| *>
 | |
| *>      (1) DSYGV with ITYPE = 1 and UPLO ='U':
 | |
| *>
 | |
| *>              | A Z - B Z D | / ( |A| |Z| n ulp )
 | |
| *>              | D - D2 | / ( |D| ulp )   where D is computed by
 | |
| *>                                         DSYGV and  D2 is computed by
 | |
| *>                                         DSYGV_2STAGE. This test is
 | |
| *>                                         only performed for DSYGV
 | |
| *>
 | |
| *>      (2) as (1) but calling DSPGV
 | |
| *>      (3) as (1) but calling DSBGV
 | |
| *>      (4) as (1) but with UPLO = 'L'
 | |
| *>      (5) as (4) but calling DSPGV
 | |
| *>      (6) as (4) but calling DSBGV
 | |
| *>
 | |
| *>      (7) DSYGV with ITYPE = 2 and UPLO ='U':
 | |
| *>
 | |
| *>              | A B Z - Z D | / ( |A| |Z| n ulp )
 | |
| *>
 | |
| *>      (8) as (7) but calling DSPGV
 | |
| *>      (9) as (7) but with UPLO = 'L'
 | |
| *>      (10) as (9) but calling DSPGV
 | |
| *>
 | |
| *>      (11) DSYGV with ITYPE = 3 and UPLO ='U':
 | |
| *>
 | |
| *>              | B A Z - Z D | / ( |A| |Z| n ulp )
 | |
| *>
 | |
| *>      (12) as (11) but calling DSPGV
 | |
| *>      (13) as (11) but with UPLO = 'L'
 | |
| *>      (14) as (13) but calling DSPGV
 | |
| *>
 | |
| *>      DSYGVD, DSPGVD and DSBGVD performed the same 14 tests.
 | |
| *>
 | |
| *>      DSYGVX, DSPGVX and DSBGVX performed the above 14 tests with
 | |
| *>      the parameter RANGE = 'A', 'N' and 'I', respectively.
 | |
| *>
 | |
| *>      The "sizes" are specified by an array NN(1:NSIZES); the value
 | |
| *>      of each element NN(j) specifies one size.
 | |
| *>      The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | |
| *>      if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *>      This type is used for the matrix A which has half-bandwidth KA.
 | |
| *>      B is generated as a well-conditioned positive definite matrix
 | |
| *>      with half-bandwidth KB (<= KA).
 | |
| *>      Currently, the list of possible types for A is:
 | |
| *>
 | |
| *>      (1)  The zero matrix.
 | |
| *>      (2)  The identity matrix.
 | |
| *>
 | |
| *>      (3)  A diagonal matrix with evenly spaced entries
 | |
| *>           1, ..., ULP  and random signs.
 | |
| *>           (ULP = (first number larger than 1) - 1 )
 | |
| *>      (4)  A diagonal matrix with geometrically spaced entries
 | |
| *>           1, ..., ULP  and random signs.
 | |
| *>      (5)  A diagonal matrix with "clustered" entries
 | |
| *>           1, ULP, ..., ULP and random signs.
 | |
| *>
 | |
| *>      (6)  Same as (4), but multiplied by SQRT( overflow threshold )
 | |
| *>      (7)  Same as (4), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *>      (8)  A matrix of the form  U* D U, where U is orthogonal and
 | |
| *>           D has evenly spaced entries 1, ..., ULP with random signs
 | |
| *>           on the diagonal.
 | |
| *>
 | |
| *>      (9)  A matrix of the form  U* D U, where U is orthogonal and
 | |
| *>           D has geometrically spaced entries 1, ..., ULP with random
 | |
| *>           signs on the diagonal.
 | |
| *>
 | |
| *>      (10) A matrix of the form  U* D U, where U is orthogonal and
 | |
| *>           D has "clustered" entries 1, ULP,..., ULP with random
 | |
| *>           signs on the diagonal.
 | |
| *>
 | |
| *>      (11) Same as (8), but multiplied by SQRT( overflow threshold )
 | |
| *>      (12) Same as (8), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *>      (13) symmetric matrix with random entries chosen from (-1,1).
 | |
| *>      (14) Same as (13), but multiplied by SQRT( overflow threshold )
 | |
| *>      (15) Same as (13), but multiplied by SQRT( underflow threshold)
 | |
| *>
 | |
| *>      (16) Same as (8), but with KA = 1 and KB = 1
 | |
| *>      (17) Same as (8), but with KA = 2 and KB = 1
 | |
| *>      (18) Same as (8), but with KA = 2 and KB = 2
 | |
| *>      (19) Same as (8), but with KA = 3 and KB = 1
 | |
| *>      (20) Same as (8), but with KA = 3 and KB = 2
 | |
| *>      (21) Same as (8), but with KA = 3 and KB = 3
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \verbatim
 | |
| *>  NSIZES  INTEGER
 | |
| *>          The number of sizes of matrices to use.  If it is zero,
 | |
| *>          DDRVSG2STG does nothing.  It must be at least zero.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  NN      INTEGER array, dimension (NSIZES)
 | |
| *>          An array containing the sizes to be used for the matrices.
 | |
| *>          Zero values will be skipped.  The values must be at least
 | |
| *>          zero.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  NTYPES  INTEGER
 | |
| *>          The number of elements in DOTYPE.   If it is zero, DDRVSG2STG
 | |
| *>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | |
| *>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | |
| *>          defined, which is to use whatever matrix is in A.  This
 | |
| *>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | |
| *>          DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  DOTYPE  LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  ISEED   INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to DDRVSG2STG to continue the same random number
 | |
| *>          sequence.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  THRESH  DOUBLE PRECISION
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error
 | |
| *>          is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>          small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>          it should not depend on the precision (single vs. double)
 | |
| *>          or the size of the matrix.  It must be at least zero.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  NOUNIT  INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns IINFO not equal to 0.)
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  A       DOUBLE PRECISION array, dimension (LDA , max(NN))
 | |
| *>          Used to hold the matrix whose eigenvalues are to be
 | |
| *>          computed.  On exit, A contains the last matrix actually
 | |
| *>          used.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  LDA     INTEGER
 | |
| *>          The leading dimension of A and AB.  It must be at
 | |
| *>          least 1 and at least max( NN ).
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  B       DOUBLE PRECISION array, dimension (LDB , max(NN))
 | |
| *>          Used to hold the symmetric positive definite matrix for
 | |
| *>          the generailzed problem.
 | |
| *>          On exit, B contains the last matrix actually
 | |
| *>          used.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  LDB     INTEGER
 | |
| *>          The leading dimension of B and BB.  It must be at
 | |
| *>          least 1 and at least max( NN ).
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  D       DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>          The eigenvalues of A. On exit, the eigenvalues in D
 | |
| *>          correspond with the matrix in A.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  Z       DOUBLE PRECISION array, dimension (LDZ, max(NN))
 | |
| *>          The matrix of eigenvectors.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  LDZ     INTEGER
 | |
| *>          The leading dimension of Z.  It must be at least 1 and
 | |
| *>          at least max( NN ).
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  AB      DOUBLE PRECISION array, dimension (LDA, max(NN))
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  BB      DOUBLE PRECISION array, dimension (LDB, max(NN))
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  AP      DOUBLE PRECISION array, dimension (max(NN)**2)
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  BP      DOUBLE PRECISION array, dimension (max(NN)**2)
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  WORK    DOUBLE PRECISION array, dimension (NWORK)
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  NWORK   INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least
 | |
| *>          1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and
 | |
| *>          lg( N ) = smallest integer k such that 2**k >= N.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  IWORK   INTEGER array, dimension (LIWORK)
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  LIWORK  INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least 6*N.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  RESULT  DOUBLE PRECISION array, dimension (70)
 | |
| *>          The values computed by the 70 tests described above.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  INFO    INTEGER
 | |
| *>          If 0, then everything ran OK.
 | |
| *>           -1: NSIZES < 0
 | |
| *>           -2: Some NN(j) < 0
 | |
| *>           -3: NTYPES < 0
 | |
| *>           -5: THRESH < 0
 | |
| *>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
 | |
| *>          -16: LDZ < 1 or LDZ < NMAX.
 | |
| *>          -21: NWORK too small.
 | |
| *>          -23: LIWORK too small.
 | |
| *>          If  DLATMR, SLATMS, DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD,
 | |
| *>              DSBGVD, DSYGVX, DSPGVX or SSBGVX returns an error code,
 | |
| *>              the absolute value of it is returned.
 | |
| *>          Modified.
 | |
| *>
 | |
| *> ----------------------------------------------------------------------
 | |
| *>
 | |
| *>       Some Local Variables and Parameters:
 | |
| *>       ---- ----- --------- --- ----------
 | |
| *>       ZERO, ONE       Real 0 and 1.
 | |
| *>       MAXTYP          The number of types defined.
 | |
| *>       NTEST           The number of tests that have been run
 | |
| *>                       on this matrix.
 | |
| *>       NTESTT          The total number of tests for this call.
 | |
| *>       NMAX            Largest value in NN.
 | |
| *>       NMATS           The number of matrices generated so far.
 | |
| *>       NERRS           The number of tests which have exceeded THRESH
 | |
| *>                       so far (computed by DLAFTS).
 | |
| *>       COND, IMODE     Values to be passed to the matrix generators.
 | |
| *>       ANORM           Norm of A; passed to matrix generators.
 | |
| *>
 | |
| *>       OVFL, UNFL      Overflow and underflow thresholds.
 | |
| *>       ULP, ULPINV     Finest relative precision and its inverse.
 | |
| *>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
 | |
| *>               The following four arrays decode JTYPE:
 | |
| *>       KTYPE(j)        The general type (1-10) for type "j".
 | |
| *>       KMODE(j)        The MODE value to be passed to the matrix
 | |
| *>                       generator for type "j".
 | |
| *>       KMAGN(j)        The order of magnitude ( O(1),
 | |
| *>                       O(overflow^(1/2) ), O(underflow^(1/2) )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
|      $                       NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
 | |
|      $                       BB, AP, BP, WORK, NWORK, IWORK, LIWORK, 
 | |
|      $                       RESULT, INFO )
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
 | |
|      $                   NTYPES, NWORK
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), AB( LDA, * ), AP( * ),
 | |
|      $                   B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
 | |
|      $                   D2( * ), RESULT( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TEN
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 21 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
 | |
|      $                   ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
 | |
|      $                   KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
 | |
|      $                   NTESTT
 | |
|       DOUBLE PRECISION   ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
 | |
|      $                   RTUNFL, ULP, ULPINV, UNFL, VL, VU, TEMP1, TEMP2
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
 | |
|      $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
 | |
|      $                   KTYPE( MAXTYP )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, DLARND
 | |
|       EXTERNAL           LSAME, DLAMCH, DLARND
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLABAD, DLACPY, DLAFTS, DLASET, DLASUM, DLATMR,
 | |
|      $                   DLATMS, DSBGV, DSBGVD, DSBGVX, DSGT01, DSPGV,
 | |
|      $                   DSPGVD, DSPGVX, DSYGV, DSYGVD, DSYGVX, XERBLA,
 | |
|      $                   DSYGV_2STAGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
 | |
|       DATA               KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
 | |
|      $                   2, 3, 6*1 /
 | |
|       DATA               KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
 | |
|      $                   0, 0, 6*4 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     1)      Check for errors
 | |
| *
 | |
|       NTESTT = 0
 | |
|       INFO = 0
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
|       NMAX = 0
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
 | |
|          INFO = -16
 | |
|       ELSE IF( 2*MAX( NMAX, 3 )**2.GT.NWORK ) THEN
 | |
|          INFO = -21
 | |
|       ELSE IF( 2*MAX( NMAX, 3 )**2.GT.LIWORK ) THEN
 | |
|          INFO = -23
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DDRVSG2STG', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     More Important constants
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = DLAMCH( 'Overflow' )
 | |
|       CALL DLABAD( UNFL, OVFL )
 | |
|       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | |
|       ULPINV = ONE / ULP
 | |
|       RTUNFL = SQRT( UNFL )
 | |
|       RTOVFL = SQRT( OVFL )
 | |
| *
 | |
|       DO 20 I = 1, 4
 | |
|          ISEED2( I ) = ISEED( I )
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NERRS = 0
 | |
|       NMATS = 0
 | |
| *
 | |
|       DO 650 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          ANINV = ONE / DBLE( MAX( 1, N ) )
 | |
| *
 | |
|          IF( NSIZES.NE.1 ) THEN
 | |
|             MTYPES = MIN( MAXTYP, NTYPES )
 | |
|          ELSE
 | |
|             MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|          END IF
 | |
| *
 | |
|          KA9 = 0
 | |
|          KB9 = 0
 | |
|          DO 640 JTYPE = 1, MTYPES
 | |
|             IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $         GO TO 640
 | |
|             NMATS = NMATS + 1
 | |
|             NTEST = 0
 | |
| *
 | |
|             DO 30 J = 1, 4
 | |
|                IOLDSD( J ) = ISEED( J )
 | |
|    30       CONTINUE
 | |
| *
 | |
| *           2)      Compute "A"
 | |
| *
 | |
| *                   Control parameters:
 | |
| *
 | |
| *               KMAGN  KMODE        KTYPE
 | |
| *           =1  O(1)   clustered 1  zero
 | |
| *           =2  large  clustered 2  identity
 | |
| *           =3  small  exponential  (none)
 | |
| *           =4         arithmetic   diagonal, w/ eigenvalues
 | |
| *           =5         random log   hermitian, w/ eigenvalues
 | |
| *           =6         random       (none)
 | |
| *           =7                      random diagonal
 | |
| *           =8                      random hermitian
 | |
| *           =9                      banded, w/ eigenvalues
 | |
| *
 | |
|             IF( MTYPES.GT.MAXTYP )
 | |
|      $         GO TO 90
 | |
| *
 | |
|             ITYPE = KTYPE( JTYPE )
 | |
|             IMODE = KMODE( JTYPE )
 | |
| *
 | |
| *           Compute norm
 | |
| *
 | |
|             GO TO ( 40, 50, 60 )KMAGN( JTYPE )
 | |
| *
 | |
|    40       CONTINUE
 | |
|             ANORM = ONE
 | |
|             GO TO 70
 | |
| *
 | |
|    50       CONTINUE
 | |
|             ANORM = ( RTOVFL*ULP )*ANINV
 | |
|             GO TO 70
 | |
| *
 | |
|    60       CONTINUE
 | |
|             ANORM = RTUNFL*N*ULPINV
 | |
|             GO TO 70
 | |
| *
 | |
|    70       CONTINUE
 | |
| *
 | |
|             IINFO = 0
 | |
|             COND = ULPINV
 | |
| *
 | |
| *           Special Matrices -- Identity & Jordan block
 | |
| *
 | |
|             IF( ITYPE.EQ.1 ) THEN
 | |
| *
 | |
| *              Zero
 | |
| *
 | |
|                KA = 0
 | |
|                KB = 0
 | |
|                CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *              Identity
 | |
| *
 | |
|                KA = 0
 | |
|                KB = 0
 | |
|                CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | |
|                DO 80 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|    80          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *              Diagonal Matrix, [Eigen]values Specified
 | |
| *
 | |
|                KA = 0
 | |
|                KB = 0
 | |
|                CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.5 ) THEN
 | |
| *
 | |
| *              symmetric, eigenvalues specified
 | |
| *
 | |
|                KA = MAX( 0, N-1 )
 | |
|                KB = KA
 | |
|                CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.7 ) THEN
 | |
| *
 | |
| *              Diagonal, random eigenvalues
 | |
| *
 | |
|                KA = 0
 | |
|                KB = 0
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.8 ) THEN
 | |
| *
 | |
| *              symmetric, random eigenvalues
 | |
| *
 | |
|                KA = MAX( 0, N-1 )
 | |
|                KB = KA
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.9 ) THEN
 | |
| *
 | |
| *              symmetric banded, eigenvalues specified
 | |
| *
 | |
| *              The following values are used for the half-bandwidths:
 | |
| *
 | |
| *                ka = 1   kb = 1
 | |
| *                ka = 2   kb = 1
 | |
| *                ka = 2   kb = 2
 | |
| *                ka = 3   kb = 1
 | |
| *                ka = 3   kb = 2
 | |
| *                ka = 3   kb = 3
 | |
| *
 | |
|                KB9 = KB9 + 1
 | |
|                IF( KB9.GT.KA9 ) THEN
 | |
|                   KA9 = KA9 + 1
 | |
|                   KB9 = 1
 | |
|                END IF
 | |
|                KA = MAX( 0, MIN( N-1, KA9 ) )
 | |
|                KB = MAX( 0, MIN( N-1, KB9 ) )
 | |
|                CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, KA, KA, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                IINFO = 1
 | |
|             END IF
 | |
| *
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|    90       CONTINUE
 | |
| *
 | |
|             ABSTOL = UNFL + UNFL
 | |
|             IF( N.LE.1 ) THEN
 | |
|                IL = 1
 | |
|                IU = N
 | |
|             ELSE
 | |
|                IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
 | |
|                IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
 | |
|                IF( IL.GT.IU ) THEN
 | |
|                   ITEMP = IL
 | |
|                   IL = IU
 | |
|                   IU = ITEMP
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           3) Call DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, SSBGVD,
 | |
| *              DSYGVX, DSPGVX, and DSBGVX, do tests.
 | |
| *
 | |
| *           loop over the three generalized problems
 | |
| *                 IBTYPE = 1: A*x = (lambda)*B*x
 | |
| *                 IBTYPE = 2: A*B*x = (lambda)*x
 | |
| *                 IBTYPE = 3: B*A*x = (lambda)*x
 | |
| *
 | |
|             DO 630 IBTYPE = 1, 3
 | |
| *
 | |
| *              loop over the setting UPLO
 | |
| *
 | |
|                DO 620 IBUPLO = 1, 2
 | |
|                   IF( IBUPLO.EQ.1 )
 | |
|      $               UPLO = 'U'
 | |
|                   IF( IBUPLO.EQ.2 )
 | |
|      $               UPLO = 'L'
 | |
| *
 | |
| *                 Generate random well-conditioned positive definite
 | |
| *                 matrix B, of bandwidth not greater than that of A.
 | |
| *
 | |
|                   CALL DLATMS( N, N, 'U', ISEED, 'P', WORK, 5, TEN, ONE,
 | |
|      $                         KB, KB, UPLO, B, LDB, WORK( N+1 ),
 | |
|      $                         IINFO )
 | |
| *
 | |
| *                 Test DSYGV
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
|                   CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
 | |
|                   CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | |
| *
 | |
|                   CALL DSYGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
 | |
|      $                        WORK, NWORK, IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSYGV(V,' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 100
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
| *                 Test DSYGV_2STAGE
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
|                   CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
 | |
|                   CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | |
| *
 | |
|                   CALL DSYGV_2STAGE( IBTYPE, 'N', UPLO, N, Z, LDZ,
 | |
|      $                               BB, LDB, D2, WORK, NWORK, IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )
 | |
|      $                  'DSYGV_2STAGE(V,' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 100
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
| C                  CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
| C     $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *           
 | |
| *                 Do Tests | D1 - D2 | / ( |D1| ulp )
 | |
| *                 D1 computed using the standard 1-stage reduction as reference
 | |
| *                 D2 computed using the 2-stage reduction
 | |
| *           
 | |
|                   TEMP1 = ZERO
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 151 J = 1, N
 | |
|                      TEMP1 = MAX( TEMP1, ABS( D( J ) ), 
 | |
|      $                                   ABS( D2( J ) ) )
 | |
|                      TEMP2 = MAX( TEMP2, ABS( D( J )-D2( J ) ) )
 | |
|   151             CONTINUE
 | |
| *           
 | |
|                   RESULT( NTEST ) = TEMP2 / 
 | |
|      $                              MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
 | |
| *
 | |
| *                 Test DSYGVD
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
|                   CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
 | |
|                   CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | |
| *
 | |
|                   CALL DSYGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
 | |
|      $                         WORK, NWORK, IWORK, LIWORK, IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSYGVD(V,' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 100
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
| *                 Test DSYGVX
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
|                   CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
 | |
|                   CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | |
| *
 | |
|                   CALL DSYGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
 | |
|      $                         LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
 | |
|      $                         LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
 | |
|      $                         IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,A' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 100
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
|                   CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
 | |
|                   CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | |
| *
 | |
| *                 since we do not know the exact eigenvalues of this
 | |
| *                 eigenpair, we just set VL and VU as constants.
 | |
| *                 It is quite possible that there are no eigenvalues
 | |
| *                 in this interval.
 | |
| *
 | |
|                   VL = ZERO
 | |
|                   VU = ANORM
 | |
|                   CALL DSYGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
 | |
|      $                         LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
 | |
|      $                         LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
 | |
|      $                         IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,V,' //
 | |
|      $                  UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 100
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
|                   CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
 | |
|                   CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | |
| *
 | |
|                   CALL DSYGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
 | |
|      $                         LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
 | |
|      $                         LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
 | |
|      $                         IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,I,' //
 | |
|      $                  UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 100
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|   100             CONTINUE
 | |
| *
 | |
| *                 Test DSPGV
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
| *                 Copy the matrices into packed storage.
 | |
| *
 | |
|                   IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                      IJ = 1
 | |
|                      DO 120 J = 1, N
 | |
|                         DO 110 I = 1, J
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   110                   CONTINUE
 | |
|   120                CONTINUE
 | |
|                   ELSE
 | |
|                      IJ = 1
 | |
|                      DO 140 J = 1, N
 | |
|                         DO 130 I = J, N
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   130                   CONTINUE
 | |
|   140                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
|                   CALL DSPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
 | |
|      $                        WORK, IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSPGV(V,' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 310
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
| *                 Test DSPGVD
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
| *                 Copy the matrices into packed storage.
 | |
| *
 | |
|                   IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                      IJ = 1
 | |
|                      DO 160 J = 1, N
 | |
|                         DO 150 I = 1, J
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   150                   CONTINUE
 | |
|   160                CONTINUE
 | |
|                   ELSE
 | |
|                      IJ = 1
 | |
|                      DO 180 J = 1, N
 | |
|                         DO 170 I = J, N
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   170                   CONTINUE
 | |
|   180                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
|                   CALL DSPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
 | |
|      $                         WORK, NWORK, IWORK, LIWORK, IINFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSPGVD(V,' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 310
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
| *                 Test DSPGVX
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
| *                 Copy the matrices into packed storage.
 | |
| *
 | |
|                   IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                      IJ = 1
 | |
|                      DO 200 J = 1, N
 | |
|                         DO 190 I = 1, J
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   190                   CONTINUE
 | |
|   200                CONTINUE
 | |
|                   ELSE
 | |
|                      IJ = 1
 | |
|                      DO 220 J = 1, N
 | |
|                         DO 210 I = J, N
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   210                   CONTINUE
 | |
|   220                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
|                   CALL DSPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
 | |
|      $                         VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
 | |
|      $                         IWORK( N+1 ), IWORK, INFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,A' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 310
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
| *                 Copy the matrices into packed storage.
 | |
| *
 | |
|                   IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                      IJ = 1
 | |
|                      DO 240 J = 1, N
 | |
|                         DO 230 I = 1, J
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   230                   CONTINUE
 | |
|   240                CONTINUE
 | |
|                   ELSE
 | |
|                      IJ = 1
 | |
|                      DO 260 J = 1, N
 | |
|                         DO 250 I = J, N
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   250                   CONTINUE
 | |
|   260                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
|                   VL = ZERO
 | |
|                   VU = ANORM
 | |
|                   CALL DSPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
 | |
|      $                         VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
 | |
|      $                         IWORK( N+1 ), IWORK, INFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,V' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 310
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|                   NTEST = NTEST + 1
 | |
| *
 | |
| *                 Copy the matrices into packed storage.
 | |
| *
 | |
|                   IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                      IJ = 1
 | |
|                      DO 280 J = 1, N
 | |
|                         DO 270 I = 1, J
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   270                   CONTINUE
 | |
|   280                CONTINUE
 | |
|                   ELSE
 | |
|                      IJ = 1
 | |
|                      DO 300 J = 1, N
 | |
|                         DO 290 I = J, N
 | |
|                            AP( IJ ) = A( I, J )
 | |
|                            BP( IJ ) = B( I, J )
 | |
|                            IJ = IJ + 1
 | |
|   290                   CONTINUE
 | |
|   300                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
|                   CALL DSPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
 | |
|      $                         VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
 | |
|      $                         IWORK( N+1 ), IWORK, INFO )
 | |
|                   IF( IINFO.NE.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,I' // UPLO //
 | |
|      $                  ')', IINFO, N, JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      IF( IINFO.LT.0 ) THEN
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         RESULT( NTEST ) = ULPINV
 | |
|                         GO TO 310
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test
 | |
| *
 | |
|                   CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                         LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|   310             CONTINUE
 | |
| *
 | |
|                   IF( IBTYPE.EQ.1 ) THEN
 | |
| *
 | |
| *                    TEST DSBGV
 | |
| *
 | |
|                      NTEST = NTEST + 1
 | |
| *
 | |
| *                    Copy the matrices into band storage.
 | |
| *
 | |
|                      IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                         DO 340 J = 1, N
 | |
|                            DO 320 I = MAX( 1, J-KA ), J
 | |
|                               AB( KA+1+I-J, J ) = A( I, J )
 | |
|   320                      CONTINUE
 | |
|                            DO 330 I = MAX( 1, J-KB ), J
 | |
|                               BB( KB+1+I-J, J ) = B( I, J )
 | |
|   330                      CONTINUE
 | |
|   340                   CONTINUE
 | |
|                      ELSE
 | |
|                         DO 370 J = 1, N
 | |
|                            DO 350 I = J, MIN( N, J+KA )
 | |
|                               AB( 1+I-J, J ) = A( I, J )
 | |
|   350                      CONTINUE
 | |
|                            DO 360 I = J, MIN( N, J+KB )
 | |
|                               BB( 1+I-J, J ) = B( I, J )
 | |
|   360                      CONTINUE
 | |
|   370                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
|                      CALL DSBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
 | |
|      $                           D, Z, LDZ, WORK, IINFO )
 | |
|                      IF( IINFO.NE.0 ) THEN
 | |
|                         WRITE( NOUNIT, FMT = 9999 )'DSBGV(V,' //
 | |
|      $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | |
|                         INFO = ABS( IINFO )
 | |
|                         IF( IINFO.LT.0 ) THEN
 | |
|                            RETURN
 | |
|                         ELSE
 | |
|                            RESULT( NTEST ) = ULPINV
 | |
|                            GO TO 620
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Do Test
 | |
| *
 | |
|                      CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
|      $                            LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
| *                    TEST DSBGVD
 | |
| *
 | |
|                      NTEST = NTEST + 1
 | |
| *
 | |
| *                    Copy the matrices into band storage.
 | |
| *
 | |
|                      IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                         DO 400 J = 1, N
 | |
|                            DO 380 I = MAX( 1, J-KA ), J
 | |
|                               AB( KA+1+I-J, J ) = A( I, J )
 | |
|   380                      CONTINUE
 | |
|                            DO 390 I = MAX( 1, J-KB ), J
 | |
|                               BB( KB+1+I-J, J ) = B( I, J )
 | |
|   390                      CONTINUE
 | |
|   400                   CONTINUE
 | |
|                      ELSE
 | |
|                         DO 430 J = 1, N
 | |
|                            DO 410 I = J, MIN( N, J+KA )
 | |
|                               AB( 1+I-J, J ) = A( I, J )
 | |
|   410                      CONTINUE
 | |
|                            DO 420 I = J, MIN( N, J+KB )
 | |
|                               BB( 1+I-J, J ) = B( I, J )
 | |
|   420                      CONTINUE
 | |
|   430                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
|                      CALL DSBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
 | |
|      $                            LDB, D, Z, LDZ, WORK, NWORK, IWORK,
 | |
|      $                            LIWORK, IINFO )
 | |
|                      IF( IINFO.NE.0 ) THEN
 | |
|                         WRITE( NOUNIT, FMT = 9999 )'DSBGVD(V,' //
 | |
|      $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | |
|                         INFO = ABS( IINFO )
 | |
|                         IF( IINFO.LT.0 ) THEN
 | |
|                            RETURN
 | |
|                         ELSE
 | |
|                            RESULT( NTEST ) = ULPINV
 | |
|                            GO TO 620
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Do Test
 | |
| *
 | |
|                      CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | |
|      $                            LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
| *                    Test DSBGVX
 | |
| *
 | |
|                      NTEST = NTEST + 1
 | |
| *
 | |
| *                    Copy the matrices into band storage.
 | |
| *
 | |
|                      IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                         DO 460 J = 1, N
 | |
|                            DO 440 I = MAX( 1, J-KA ), J
 | |
|                               AB( KA+1+I-J, J ) = A( I, J )
 | |
|   440                      CONTINUE
 | |
|                            DO 450 I = MAX( 1, J-KB ), J
 | |
|                               BB( KB+1+I-J, J ) = B( I, J )
 | |
|   450                      CONTINUE
 | |
|   460                   CONTINUE
 | |
|                      ELSE
 | |
|                         DO 490 J = 1, N
 | |
|                            DO 470 I = J, MIN( N, J+KA )
 | |
|                               AB( 1+I-J, J ) = A( I, J )
 | |
|   470                      CONTINUE
 | |
|                            DO 480 I = J, MIN( N, J+KB )
 | |
|                               BB( 1+I-J, J ) = B( I, J )
 | |
|   480                      CONTINUE
 | |
|   490                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
|                      CALL DSBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
 | |
|      $                            BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
 | |
|      $                            IU, ABSTOL, M, D, Z, LDZ, WORK,
 | |
|      $                            IWORK( N+1 ), IWORK, IINFO )
 | |
|                      IF( IINFO.NE.0 ) THEN
 | |
|                         WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,A' //
 | |
|      $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | |
|                         INFO = ABS( IINFO )
 | |
|                         IF( IINFO.LT.0 ) THEN
 | |
|                            RETURN
 | |
|                         ELSE
 | |
|                            RESULT( NTEST ) = ULPINV
 | |
|                            GO TO 620
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Do Test
 | |
| *
 | |
|                      CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                            LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
| *
 | |
|                      NTEST = NTEST + 1
 | |
| *
 | |
| *                    Copy the matrices into band storage.
 | |
| *
 | |
|                      IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                         DO 520 J = 1, N
 | |
|                            DO 500 I = MAX( 1, J-KA ), J
 | |
|                               AB( KA+1+I-J, J ) = A( I, J )
 | |
|   500                      CONTINUE
 | |
|                            DO 510 I = MAX( 1, J-KB ), J
 | |
|                               BB( KB+1+I-J, J ) = B( I, J )
 | |
|   510                      CONTINUE
 | |
|   520                   CONTINUE
 | |
|                      ELSE
 | |
|                         DO 550 J = 1, N
 | |
|                            DO 530 I = J, MIN( N, J+KA )
 | |
|                               AB( 1+I-J, J ) = A( I, J )
 | |
|   530                      CONTINUE
 | |
|                            DO 540 I = J, MIN( N, J+KB )
 | |
|                               BB( 1+I-J, J ) = B( I, J )
 | |
|   540                      CONTINUE
 | |
|   550                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
|                      VL = ZERO
 | |
|                      VU = ANORM
 | |
|                      CALL DSBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
 | |
|      $                            BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
 | |
|      $                            IU, ABSTOL, M, D, Z, LDZ, WORK,
 | |
|      $                            IWORK( N+1 ), IWORK, IINFO )
 | |
|                      IF( IINFO.NE.0 ) THEN
 | |
|                         WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,V' //
 | |
|      $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | |
|                         INFO = ABS( IINFO )
 | |
|                         IF( IINFO.LT.0 ) THEN
 | |
|                            RETURN
 | |
|                         ELSE
 | |
|                            RESULT( NTEST ) = ULPINV
 | |
|                            GO TO 620
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Do Test
 | |
| *
 | |
|                      CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                            LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|                      NTEST = NTEST + 1
 | |
| *
 | |
| *                    Copy the matrices into band storage.
 | |
| *
 | |
|                      IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                         DO 580 J = 1, N
 | |
|                            DO 560 I = MAX( 1, J-KA ), J
 | |
|                               AB( KA+1+I-J, J ) = A( I, J )
 | |
|   560                      CONTINUE
 | |
|                            DO 570 I = MAX( 1, J-KB ), J
 | |
|                               BB( KB+1+I-J, J ) = B( I, J )
 | |
|   570                      CONTINUE
 | |
|   580                   CONTINUE
 | |
|                      ELSE
 | |
|                         DO 610 J = 1, N
 | |
|                            DO 590 I = J, MIN( N, J+KA )
 | |
|                               AB( 1+I-J, J ) = A( I, J )
 | |
|   590                      CONTINUE
 | |
|                            DO 600 I = J, MIN( N, J+KB )
 | |
|                               BB( 1+I-J, J ) = B( I, J )
 | |
|   600                      CONTINUE
 | |
|   610                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
|                      CALL DSBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
 | |
|      $                            BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
 | |
|      $                            IU, ABSTOL, M, D, Z, LDZ, WORK,
 | |
|      $                            IWORK( N+1 ), IWORK, IINFO )
 | |
|                      IF( IINFO.NE.0 ) THEN
 | |
|                         WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,I' //
 | |
|      $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | |
|                         INFO = ABS( IINFO )
 | |
|                         IF( IINFO.LT.0 ) THEN
 | |
|                            RETURN
 | |
|                         ELSE
 | |
|                            RESULT( NTEST ) = ULPINV
 | |
|                            GO TO 620
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Do Test
 | |
| *
 | |
|                      CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | |
|      $                            LDZ, D, WORK, RESULT( NTEST ) )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|   620          CONTINUE
 | |
|   630       CONTINUE
 | |
| *
 | |
| *           End of Loop -- Check for RESULT(j) > THRESH
 | |
| *
 | |
|             NTESTT = NTESTT + NTEST
 | |
|             CALL DLAFTS( 'DSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
 | |
|      $                   THRESH, NOUNIT, NERRS )
 | |
|   640    CONTINUE
 | |
|   650 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL DLASUM( 'DSG', NOUNIT, NERRS, NTESTT )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DDRVSG2STG
 | |
| *
 | |
|  9999 FORMAT( ' DDRVSG2STG: ', A, ' returned INFO=', I6, '.', / 9X,
 | |
|      $    'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
|       END
 |