941 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			941 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DDRGEV3
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DDRGEV3( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
| *                          NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
 | |
| *                          ALPHAR, ALPHAI, BETA, ALPHR1, ALPHI1, BETA1,
 | |
| *                          WORK, LWORK, RESULT, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
 | |
| *      $                   NTYPES
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            ISEED( 4 ), NN( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
| *      $                   ALPHI1( * ), ALPHR1( * ), B( LDA, * ),
 | |
| *      $                   BETA( * ), BETA1( * ), Q( LDQ, * ),
 | |
| *      $                   QE( LDQE, * ), RESULT( * ), S( LDA, * ),
 | |
| *      $                   T( LDA, * ), WORK( * ), Z( LDQ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DDRGEV3 checks the nonsymmetric generalized eigenvalue problem driver
 | |
| *> routine DGGEV3.
 | |
| *>
 | |
| *> DGGEV3 computes for a pair of n-by-n nonsymmetric matrices (A,B) the
 | |
| *> generalized eigenvalues and, optionally, the left and right
 | |
| *> eigenvectors.
 | |
| *>
 | |
| *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 | |
| *> or a ratio  alpha/beta = w, such that A - w*B is singular.  It is
 | |
| *> usually represented as the pair (alpha,beta), as there is reasonable
 | |
| *> interpretation for beta=0, and even for both being zero.
 | |
| *>
 | |
| *> A right generalized eigenvector corresponding to a generalized
 | |
| *> eigenvalue  w  for a pair of matrices (A,B) is a vector r  such that
 | |
| *> (A - wB) * r = 0.  A left generalized eigenvector is a vector l such
 | |
| *> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l.
 | |
| *>
 | |
| *> When DDRGEV3 is called, a number of matrix "sizes" ("n's") and a
 | |
| *> number of matrix "types" are specified.  For each size ("n")
 | |
| *> and each type of matrix, a pair of matrices (A, B) will be generated
 | |
| *> and used for testing.  For each matrix pair, the following tests
 | |
| *> will be performed and compared with the threshold THRESH.
 | |
| *>
 | |
| *> Results from DGGEV3:
 | |
| *>
 | |
| *> (1)  max over all left eigenvalue/-vector pairs (alpha/beta,l) of
 | |
| *>
 | |
| *>      | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) )
 | |
| *>
 | |
| *>      where VL**H is the conjugate-transpose of VL.
 | |
| *>
 | |
| *> (2)  | |VL(i)| - 1 | / ulp and whether largest component real
 | |
| *>
 | |
| *>      VL(i) denotes the i-th column of VL.
 | |
| *>
 | |
| *> (3)  max over all left eigenvalue/-vector pairs (alpha/beta,r) of
 | |
| *>
 | |
| *>      | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) )
 | |
| *>
 | |
| *> (4)  | |VR(i)| - 1 | / ulp and whether largest component real
 | |
| *>
 | |
| *>      VR(i) denotes the i-th column of VR.
 | |
| *>
 | |
| *> (5)  W(full) = W(partial)
 | |
| *>      W(full) denotes the eigenvalues computed when both l and r
 | |
| *>      are also computed, and W(partial) denotes the eigenvalues
 | |
| *>      computed when only W, only W and r, or only W and l are
 | |
| *>      computed.
 | |
| *>
 | |
| *> (6)  VL(full) = VL(partial)
 | |
| *>      VL(full) denotes the left eigenvectors computed when both l
 | |
| *>      and r are computed, and VL(partial) denotes the result
 | |
| *>      when only l is computed.
 | |
| *>
 | |
| *> (7)  VR(full) = VR(partial)
 | |
| *>      VR(full) denotes the right eigenvectors computed when both l
 | |
| *>      and r are also computed, and VR(partial) denotes the result
 | |
| *>      when only l is computed.
 | |
| *>
 | |
| *>
 | |
| *> Test Matrices
 | |
| *> ---- --------
 | |
| *>
 | |
| *> The sizes of the test matrices are specified by an array
 | |
| *> NN(1:NSIZES); the value of each element NN(j) specifies one size.
 | |
| *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
 | |
| *> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *> Currently, the list of possible types is:
 | |
| *>
 | |
| *> (1)  ( 0, 0 )         (a pair of zero matrices)
 | |
| *>
 | |
| *> (2)  ( I, 0 )         (an identity and a zero matrix)
 | |
| *>
 | |
| *> (3)  ( 0, I )         (an identity and a zero matrix)
 | |
| *>
 | |
| *> (4)  ( I, I )         (a pair of identity matrices)
 | |
| *>
 | |
| *>         t   t
 | |
| *> (5)  ( J , J  )       (a pair of transposed Jordan blocks)
 | |
| *>
 | |
| *>                                     t                ( I   0  )
 | |
| *> (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )
 | |
| *>                                  ( 0   I  )          ( 0   J  )
 | |
| *>                       and I is a k x k identity and J a (k+1)x(k+1)
 | |
| *>                       Jordan block; k=(N-1)/2
 | |
| *>
 | |
| *> (7)  ( D, I )         where D is diag( 0, 1,..., N-1 ) (a diagonal
 | |
| *>                       matrix with those diagonal entries.)
 | |
| *> (8)  ( I, D )
 | |
| *>
 | |
| *> (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big
 | |
| *>
 | |
| *> (10) ( small*D, big*I )
 | |
| *>
 | |
| *> (11) ( big*I, small*D )
 | |
| *>
 | |
| *> (12) ( small*I, big*D )
 | |
| *>
 | |
| *> (13) ( big*D, big*I )
 | |
| *>
 | |
| *> (14) ( small*D, small*I )
 | |
| *>
 | |
| *> (15) ( D1, D2 )        where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
 | |
| *>                        D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
 | |
| *>           t   t
 | |
| *> (16) Q ( J , J ) Z     where Q and Z are random orthogonal matrices.
 | |
| *>
 | |
| *> (17) Q ( T1, T2 ) Z    where T1 and T2 are upper triangular matrices
 | |
| *>                        with random O(1) entries above the diagonal
 | |
| *>                        and diagonal entries diag(T1) =
 | |
| *>                        ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
 | |
| *>                        ( 0, N-3, N-4,..., 1, 0, 0 )
 | |
| *>
 | |
| *> (18) Q ( T1, T2 ) Z    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
 | |
| *>                        s = machine precision.
 | |
| *>
 | |
| *> (19) Q ( T1, T2 ) Z    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
 | |
| *>
 | |
| *>                                                        N-5
 | |
| *> (20) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (21) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
 | |
| *>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
 | |
| *>                        where r1,..., r(N-4) are random.
 | |
| *>
 | |
| *> (22) Q ( big*T1, small*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (23) Q ( small*T1, big*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (24) Q ( small*T1, small*T2 ) Z  diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (25) Q ( big*T1, big*T2 ) Z      diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 | |
| *>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 | |
| *>
 | |
| *> (26) Q ( T1, T2 ) Z     where T1 and T2 are random upper-triangular
 | |
| *>                         matrices.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NSIZES
 | |
| *> \verbatim
 | |
| *>          NSIZES is INTEGER
 | |
| *>          The number of sizes of matrices to use.  If it is zero,
 | |
| *>          DDRGEV3 does nothing.  NSIZES >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER array, dimension (NSIZES)
 | |
| *>          An array containing the sizes to be used for the matrices.
 | |
| *>          Zero values will be skipped.  NN >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NTYPES
 | |
| *> \verbatim
 | |
| *>          NTYPES is INTEGER
 | |
| *>          The number of elements in DOTYPE.   If it is zero, DDRGEV3
 | |
| *>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | |
| *>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | |
| *>          defined, which is to use whatever matrix is in A.  This
 | |
| *>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | |
| *>          DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated. If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096. Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to DDRGEV3 to continue the same random number
 | |
| *>          sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error is
 | |
| *>          scaled to be O(1), so THRESH should be a reasonably small
 | |
| *>          multiple of 1, e.g., 10 or 100.  In particular, it should
 | |
| *>          not depend on the precision (single vs. double) or the size
 | |
| *>          of the matrix.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUNIT
 | |
| *> \verbatim
 | |
| *>          NOUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns IERR not equal to 0.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array,
 | |
| *>                                       dimension(LDA, max(NN))
 | |
| *>          Used to hold the original A matrix.  Used as input only
 | |
| *>          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
 | |
| *>          DOTYPE(MAXTYP+1)=.TRUE.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A, B, S, and T.
 | |
| *>          It must be at least 1 and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array,
 | |
| *>                                       dimension(LDA, max(NN))
 | |
| *>          Used to hold the original B matrix.  Used as input only
 | |
| *>          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
 | |
| *>          DOTYPE(MAXTYP+1)=.TRUE.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array,
 | |
| *>                                 dimension (LDA, max(NN))
 | |
| *>          The Schur form matrix computed from A by DGGEV3.  On exit, S
 | |
| *>          contains the Schur form matrix corresponding to the matrix
 | |
| *>          in A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is DOUBLE PRECISION array,
 | |
| *>                                 dimension (LDA, max(NN))
 | |
| *>          The upper triangular matrix computed from B by DGGEV3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is DOUBLE PRECISION array,
 | |
| *>                                 dimension (LDQ, max(NN))
 | |
| *>          The (left) eigenvectors matrix computed by DGGEV3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of Q and Z. It must
 | |
| *>          be at least 1 and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension( LDQ, max(NN) )
 | |
| *>          The (right) orthogonal matrix computed by DGGEV3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] QE
 | |
| *> \verbatim
 | |
| *>          QE is DOUBLE PRECISION array, dimension( LDQ, max(NN) )
 | |
| *>          QE holds the computed right or left eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQE
 | |
| *> \verbatim
 | |
| *>          LDQE is INTEGER
 | |
| *>          The leading dimension of QE. LDQE >= max(1,max(NN)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>
 | |
| *>          The generalized eigenvalues of (A,B) computed by DGGEV3.
 | |
| *>          ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th
 | |
| *>          generalized eigenvalue of A and B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHR1
 | |
| *> \verbatim
 | |
| *>          ALPHR1 is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHI1
 | |
| *> \verbatim
 | |
| *>          ALPHI1 is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA1
 | |
| *> \verbatim
 | |
| *>          BETA1 is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>
 | |
| *>          Like ALPHAR, ALPHAI, BETA, these arrays contain the
 | |
| *>          eigenvalues of A and B, but those computed when DGGEV3 only
 | |
| *>          computes a partial eigendecomposition, i.e. not the
 | |
| *>          eigenvalues and left and right eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The number of entries in WORK.  LWORK >= MAX( 8*N, N*(N+1) ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (2)
 | |
| *>          The values computed by the tests described above.
 | |
| *>          The values are currently limited to 1/ulp, to avoid overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  A routine returned an error code.  INFO is the
 | |
| *>                absolute value of the INFO value returned.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date February 2015
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DDRGEV3( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
|      $                   NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
 | |
|      $                   ALPHAR, ALPHAI, BETA, ALPHR1, ALPHI1, BETA1,
 | |
|      $                   WORK, LWORK, RESULT, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.6.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     February 2015
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
 | |
|      $                   NTYPES
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            ISEED( 4 ), NN( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
|      $                   ALPHI1( * ), ALPHR1( * ), B( LDA, * ),
 | |
|      $                   BETA( * ), BETA1( * ), Q( LDQ, * ),
 | |
|      $                   QE( LDQE, * ), RESULT( * ), S( LDA, * ),
 | |
|      $                   T( LDA, * ), WORK( * ), Z( LDQ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 26 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN
 | |
|       INTEGER            I, IADD, IERR, IN, J, JC, JR, JSIZE, JTYPE,
 | |
|      $                   MAXWRK, MINWRK, MTYPES, N, N1, NERRS, NMATS,
 | |
|      $                   NMAX, NTESTT
 | |
|       DOUBLE PRECISION   SAFMAX, SAFMIN, ULP, ULPINV
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
 | |
|      $                   IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
 | |
|      $                   KATYPE( MAXTYP ), KAZERO( MAXTYP ),
 | |
|      $                   KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
 | |
|      $                   KBZERO( MAXTYP ), KCLASS( MAXTYP ),
 | |
|      $                   KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
 | |
|       DOUBLE PRECISION   RMAGN( 0: 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLARND
 | |
|       EXTERNAL           ILAENV, DLAMCH, DLARND
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ALASVM, DGET52, DGGEV3, DLABAD, DLACPY, DLARFG,
 | |
|      $                   DLASET, DLATM4, DORM2R, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KCLASS / 15*1, 10*2, 1*3 /
 | |
|       DATA               KZ1 / 0, 1, 2, 1, 3, 3 /
 | |
|       DATA               KZ2 / 0, 0, 1, 2, 1, 1 /
 | |
|       DATA               KADD / 0, 0, 0, 0, 3, 2 /
 | |
|       DATA               KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
 | |
|      $                   4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
 | |
|       DATA               KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
 | |
|      $                   1, 1, -4, 2, -4, 8*8, 0 /
 | |
|       DATA               KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
 | |
|      $                   4*5, 4*3, 1 /
 | |
|       DATA               KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
 | |
|      $                   4*6, 4*4, 1 /
 | |
|       DATA               KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
 | |
|      $                   2, 1 /
 | |
|       DATA               KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
 | |
|      $                   2, 1 /
 | |
|       DATA               KTRIAN / 16*0, 10*1 /
 | |
|       DATA               IASIGN / 6*0, 2, 0, 2*2, 2*0, 3*2, 0, 2, 3*0,
 | |
|      $                   5*2, 0 /
 | |
|       DATA               IBSIGN / 7*0, 2, 2*0, 2*2, 2*0, 2, 0, 2, 9*0 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
|       NMAX = 1
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( THRESH.LT.ZERO ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LDQE.LE.1 .OR. LDQE.LT.NMAX ) THEN
 | |
|          INFO = -17
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV.
 | |
| *
 | |
|       MINWRK = 1
 | |
|       IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
 | |
|          MINWRK = MAX( 1, 8*NMAX, NMAX*( NMAX+1 ) )
 | |
|          MAXWRK = 7*NMAX + NMAX*ILAENV( 1, 'DGEQRF', ' ', NMAX, 1, NMAX,
 | |
|      $            0 )
 | |
|          MAXWRK = MAX( MAXWRK, NMAX*( NMAX+1 ) )
 | |
|          WORK( 1 ) = MAXWRK
 | |
|       END IF
 | |
| *
 | |
|       IF( LWORK.LT.MINWRK )
 | |
|      $   INFO = -25
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DDRGEV3', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | |
|       SAFMIN = SAFMIN / ULP
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       CALL DLABAD( SAFMIN, SAFMAX )
 | |
|       ULPINV = ONE / ULP
 | |
| *
 | |
| *     The values RMAGN(2:3) depend on N, see below.
 | |
| *
 | |
|       RMAGN( 0 ) = ZERO
 | |
|       RMAGN( 1 ) = ONE
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NTESTT = 0
 | |
|       NERRS = 0
 | |
|       NMATS = 0
 | |
| *
 | |
|       DO 220 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          N1 = MAX( 1, N )
 | |
|          RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
 | |
|          RMAGN( 3 ) = SAFMIN*ULPINV*N1
 | |
| *
 | |
|          IF( NSIZES.NE.1 ) THEN
 | |
|             MTYPES = MIN( MAXTYP, NTYPES )
 | |
|          ELSE
 | |
|             MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|          END IF
 | |
| *
 | |
|          DO 210 JTYPE = 1, MTYPES
 | |
|             IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $         GO TO 210
 | |
|             NMATS = NMATS + 1
 | |
| *
 | |
| *           Save ISEED in case of an error.
 | |
| *
 | |
|             DO 20 J = 1, 4
 | |
|                IOLDSD( J ) = ISEED( J )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Generate test matrices A and B
 | |
| *
 | |
| *           Description of control parameters:
 | |
| *
 | |
| *           KZLASS: =1 means w/o rotation, =2 means w/ rotation,
 | |
| *                   =3 means random.
 | |
| *           KATYPE: the "type" to be passed to DLATM4 for computing A.
 | |
| *           KAZERO: the pattern of zeros on the diagonal for A:
 | |
| *                   =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
 | |
| *                   =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
 | |
| *                   =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of
 | |
| *                   non-zero entries.)
 | |
| *           KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
 | |
| *                   =2: large, =3: small.
 | |
| *           IASIGN: 1 if the diagonal elements of A are to be
 | |
| *                   multiplied by a random magnitude 1 number, =2 if
 | |
| *                   randomly chosen diagonal blocks are to be rotated
 | |
| *                   to form 2x2 blocks.
 | |
| *           KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
 | |
| *           KTRIAN: =0: don't fill in the upper triangle, =1: do.
 | |
| *           KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
 | |
| *           RMAGN: used to implement KAMAGN and KBMAGN.
 | |
| *
 | |
|             IF( MTYPES.GT.MAXTYP )
 | |
|      $         GO TO 100
 | |
|             IERR = 0
 | |
|             IF( KCLASS( JTYPE ).LT.3 ) THEN
 | |
| *
 | |
| *              Generate A (w/o rotation)
 | |
| *
 | |
|                IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
 | |
|                   IN = 2*( ( N-1 ) / 2 ) + 1
 | |
|                   IF( IN.NE.N )
 | |
|      $               CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
 | |
|                ELSE
 | |
|                   IN = N
 | |
|                END IF
 | |
|                CALL DLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
 | |
|      $                      KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
 | |
|      $                      RMAGN( KAMAGN( JTYPE ) ), ULP,
 | |
|      $                      RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
 | |
|      $                      ISEED, A, LDA )
 | |
|                IADD = KADD( KAZERO( JTYPE ) )
 | |
|                IF( IADD.GT.0 .AND. IADD.LE.N )
 | |
|      $            A( IADD, IADD ) = ONE
 | |
| *
 | |
| *              Generate B (w/o rotation)
 | |
| *
 | |
|                IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
 | |
|                   IN = 2*( ( N-1 ) / 2 ) + 1
 | |
|                   IF( IN.NE.N )
 | |
|      $               CALL DLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
 | |
|                ELSE
 | |
|                   IN = N
 | |
|                END IF
 | |
|                CALL DLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
 | |
|      $                      KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
 | |
|      $                      RMAGN( KBMAGN( JTYPE ) ), ONE,
 | |
|      $                      RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
 | |
|      $                      ISEED, B, LDA )
 | |
|                IADD = KADD( KBZERO( JTYPE ) )
 | |
|                IF( IADD.NE.0 .AND. IADD.LE.N )
 | |
|      $            B( IADD, IADD ) = ONE
 | |
| *
 | |
|                IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
 | |
| *
 | |
| *                 Include rotations
 | |
| *
 | |
| *                 Generate Q, Z as Householder transformations times
 | |
| *                 a diagonal matrix.
 | |
| *
 | |
|                   DO 40 JC = 1, N - 1
 | |
|                      DO 30 JR = JC, N
 | |
|                         Q( JR, JC ) = DLARND( 3, ISEED )
 | |
|                         Z( JR, JC ) = DLARND( 3, ISEED )
 | |
|    30                CONTINUE
 | |
|                      CALL DLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
 | |
|      $                            WORK( JC ) )
 | |
|                      WORK( 2*N+JC ) = SIGN( ONE, Q( JC, JC ) )
 | |
|                      Q( JC, JC ) = ONE
 | |
|                      CALL DLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
 | |
|      $                            WORK( N+JC ) )
 | |
|                      WORK( 3*N+JC ) = SIGN( ONE, Z( JC, JC ) )
 | |
|                      Z( JC, JC ) = ONE
 | |
|    40             CONTINUE
 | |
|                   Q( N, N ) = ONE
 | |
|                   WORK( N ) = ZERO
 | |
|                   WORK( 3*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
 | |
|                   Z( N, N ) = ONE
 | |
|                   WORK( 2*N ) = ZERO
 | |
|                   WORK( 4*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
 | |
| *
 | |
| *                 Apply the diagonal matrices
 | |
| *
 | |
|                   DO 60 JC = 1, N
 | |
|                      DO 50 JR = 1, N
 | |
|                         A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
 | |
|      $                                A( JR, JC )
 | |
|                         B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
 | |
|      $                                B( JR, JC )
 | |
|    50                CONTINUE
 | |
|    60             CONTINUE
 | |
|                   CALL DORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, A,
 | |
|      $                         LDA, WORK( 2*N+1 ), IERR )
 | |
|                   IF( IERR.NE.0 )
 | |
|      $               GO TO 90
 | |
|                   CALL DORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
 | |
|      $                         A, LDA, WORK( 2*N+1 ), IERR )
 | |
|                   IF( IERR.NE.0 )
 | |
|      $               GO TO 90
 | |
|                   CALL DORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, B,
 | |
|      $                         LDA, WORK( 2*N+1 ), IERR )
 | |
|                   IF( IERR.NE.0 )
 | |
|      $               GO TO 90
 | |
|                   CALL DORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
 | |
|      $                         B, LDA, WORK( 2*N+1 ), IERR )
 | |
|                   IF( IERR.NE.0 )
 | |
|      $               GO TO 90
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Random matrices
 | |
| *
 | |
|                DO 80 JC = 1, N
 | |
|                   DO 70 JR = 1, N
 | |
|                      A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
 | |
|      $                             DLARND( 2, ISEED )
 | |
|                      B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
 | |
|      $                             DLARND( 2, ISEED )
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
| *
 | |
|    90       CONTINUE
 | |
| *
 | |
|             IF( IERR.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'Generator', IERR, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IERR )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|   100       CONTINUE
 | |
| *
 | |
|             DO 110 I = 1, 7
 | |
|                RESULT( I ) = -ONE
 | |
|   110       CONTINUE
 | |
| *
 | |
| *           Call DGGEV3 to compute eigenvalues and eigenvectors.
 | |
| *
 | |
|             CALL DLACPY( ' ', N, N, A, LDA, S, LDA )
 | |
|             CALL DLACPY( ' ', N, N, B, LDA, T, LDA )
 | |
|             CALL DGGEV3( 'V', 'V', N, S, LDA, T, LDA, ALPHAR, ALPHAI,
 | |
|      $                  BETA, Q, LDQ, Z, LDQ, WORK, LWORK, IERR )
 | |
|             IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
 | |
|                RESULT( 1 ) = ULPINV
 | |
|                WRITE( NOUNIT, FMT = 9999 )'DGGEV31', IERR, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IERR )
 | |
|                GO TO 190
 | |
|             END IF
 | |
| *
 | |
| *           Do the tests (1) and (2)
 | |
| *
 | |
|             CALL DGET52( .TRUE., N, A, LDA, B, LDA, Q, LDQ, ALPHAR,
 | |
|      $                   ALPHAI, BETA, WORK, RESULT( 1 ) )
 | |
|             IF( RESULT( 2 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Left', 'DGGEV31',
 | |
|      $            RESULT( 2 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           Do the tests (3) and (4)
 | |
| *
 | |
|             CALL DGET52( .FALSE., N, A, LDA, B, LDA, Z, LDQ, ALPHAR,
 | |
|      $                   ALPHAI, BETA, WORK, RESULT( 3 ) )
 | |
|             IF( RESULT( 4 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Right', 'DGGEV31',
 | |
|      $            RESULT( 4 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           Do the test (5)
 | |
| *
 | |
|             CALL DLACPY( ' ', N, N, A, LDA, S, LDA )
 | |
|             CALL DLACPY( ' ', N, N, B, LDA, T, LDA )
 | |
|             CALL DGGEV3( 'N', 'N', N, S, LDA, T, LDA, ALPHR1, ALPHI1,
 | |
|      $                  BETA1, Q, LDQ, Z, LDQ, WORK, LWORK, IERR )
 | |
|             IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
 | |
|                RESULT( 1 ) = ULPINV
 | |
|                WRITE( NOUNIT, FMT = 9999 )'DGGEV32', IERR, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IERR )
 | |
|                GO TO 190
 | |
|             END IF
 | |
| *
 | |
|             DO 120 J = 1, N
 | |
|                IF( ALPHAR( J ).NE.ALPHR1( J ) .OR. ALPHAI( J ).NE.
 | |
|      $             ALPHI1( J ) .OR. BETA( J ).NE.BETA1( J ) )RESULT( 5 )
 | |
|      $              = ULPINV
 | |
|   120       CONTINUE
 | |
| *
 | |
| *           Do the test (6): Compute eigenvalues and left eigenvectors,
 | |
| *           and test them
 | |
| *
 | |
|             CALL DLACPY( ' ', N, N, A, LDA, S, LDA )
 | |
|             CALL DLACPY( ' ', N, N, B, LDA, T, LDA )
 | |
|             CALL DGGEV3( 'V', 'N', N, S, LDA, T, LDA, ALPHR1, ALPHI1,
 | |
|      $                  BETA1, QE, LDQE, Z, LDQ, WORK, LWORK, IERR )
 | |
|             IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
 | |
|                RESULT( 1 ) = ULPINV
 | |
|                WRITE( NOUNIT, FMT = 9999 )'DGGEV33', IERR, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IERR )
 | |
|                GO TO 190
 | |
|             END IF
 | |
| *
 | |
|             DO 130 J = 1, N
 | |
|                IF( ALPHAR( J ).NE.ALPHR1( J ) .OR. ALPHAI( J ).NE.
 | |
|      $             ALPHI1( J ) .OR. BETA( J ).NE.BETA1( J ) )RESULT( 6 )
 | |
|      $              = ULPINV
 | |
|   130       CONTINUE
 | |
| *
 | |
|             DO 150 J = 1, N
 | |
|                DO 140 JC = 1, N
 | |
|                   IF( Q( J, JC ).NE.QE( J, JC ) )
 | |
|      $               RESULT( 6 ) = ULPINV
 | |
|   140          CONTINUE
 | |
|   150       CONTINUE
 | |
| *
 | |
| *           DO the test (7): Compute eigenvalues and right eigenvectors,
 | |
| *           and test them
 | |
| *
 | |
|             CALL DLACPY( ' ', N, N, A, LDA, S, LDA )
 | |
|             CALL DLACPY( ' ', N, N, B, LDA, T, LDA )
 | |
|             CALL DGGEV3( 'N', 'V', N, S, LDA, T, LDA, ALPHR1, ALPHI1,
 | |
|      $                  BETA1, Q, LDQ, QE, LDQE, WORK, LWORK, IERR )
 | |
|             IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
 | |
|                RESULT( 1 ) = ULPINV
 | |
|                WRITE( NOUNIT, FMT = 9999 )'DGGEV34', IERR, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IERR )
 | |
|                GO TO 190
 | |
|             END IF
 | |
| *
 | |
|             DO 160 J = 1, N
 | |
|                IF( ALPHAR( J ).NE.ALPHR1( J ) .OR. ALPHAI( J ).NE.
 | |
|      $             ALPHI1( J ) .OR. BETA( J ).NE.BETA1( J ) )RESULT( 7 )
 | |
|      $              = ULPINV
 | |
|   160       CONTINUE
 | |
| *
 | |
|             DO 180 J = 1, N
 | |
|                DO 170 JC = 1, N
 | |
|                   IF( Z( J, JC ).NE.QE( J, JC ) )
 | |
|      $               RESULT( 7 ) = ULPINV
 | |
|   170          CONTINUE
 | |
|   180       CONTINUE
 | |
| *
 | |
| *           End of Loop -- Check for RESULT(j) > THRESH
 | |
| *
 | |
|   190       CONTINUE
 | |
| *
 | |
|             NTESTT = NTESTT + 7
 | |
| *
 | |
| *           Print out tests which fail.
 | |
| *
 | |
|             DO 200 JR = 1, 7
 | |
|                IF( RESULT( JR ).GE.THRESH ) THEN
 | |
| *
 | |
| *                 If this is the first test to fail,
 | |
| *                 print a header to the data file.
 | |
| *
 | |
|                   IF( NERRS.EQ.0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9997 )'DGV'
 | |
| *
 | |
| *                    Matrix types
 | |
| *
 | |
|                      WRITE( NOUNIT, FMT = 9996 )
 | |
|                      WRITE( NOUNIT, FMT = 9995 )
 | |
|                      WRITE( NOUNIT, FMT = 9994 )'Orthogonal'
 | |
| *
 | |
| *                    Tests performed
 | |
| *
 | |
|                      WRITE( NOUNIT, FMT = 9993 )
 | |
| *
 | |
|                   END IF
 | |
|                   NERRS = NERRS + 1
 | |
|                   IF( RESULT( JR ).LT.10000.0D0 ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
 | |
|      $                  RESULT( JR )
 | |
|                   ELSE
 | |
|                      WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
 | |
|      $                  RESULT( JR )
 | |
|                   END IF
 | |
|                END IF
 | |
|   200       CONTINUE
 | |
| *
 | |
|   210    CONTINUE
 | |
|   220 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL ALASVM( 'DGV', NOUNIT, NERRS, NTESTT, 0 )
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
|  9999 FORMAT( ' DDRGEV3: ', A, ' returned INFO=', I6, '.', / 3X, 'N=',
 | |
|      $      I6, ', JTYPE=', I6, ', ISEED=(', 4( I4, ',' ), I5, ')' )
 | |
| *
 | |
|  9998 FORMAT( ' DDRGEV3: ', A, ' Eigenvectors from ', A,
 | |
|      $      ' incorrectly normalized.', / ' Bits of error=', 0P, G10.3,
 | |
|      $      ',', 3X, 'N=', I4, ', JTYPE=', I3, ', ISEED=(',
 | |
|      $       4( I4, ',' ), I5, ')' )
 | |
| *
 | |
|  9997 FORMAT( / 1X, A3, ' -- Real Generalized eigenvalue problem driver'
 | |
|      $       )
 | |
| *
 | |
|  9996 FORMAT( ' Matrix types (see DDRGEV3 for details): ' )
 | |
| *
 | |
|  9995 FORMAT( ' Special Matrices:', 23X,
 | |
|      $      '(J''=transposed Jordan block)',
 | |
|      $      / '   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I)  5=(J'',J'')  ',
 | |
|      $      '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices:  ( ',
 | |
|      $      'D=diag(0,1,2,...) )', / '   7=(D,I)   9=(large*D, small*I',
 | |
|      $      ')  11=(large*I, small*D)  13=(large*D, large*I)', /
 | |
|      $      '   8=(I,D)  10=(small*D, large*I)  12=(small*I, large*D) ',
 | |
|      $      ' 14=(small*D, small*I)', / '  15=(D, reversed D)' )
 | |
|  9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
 | |
|      $      / '  16=Transposed Jordan Blocks             19=geometric ',
 | |
|      $      'alpha, beta=0,1', / '  17=arithm. alpha&beta             ',
 | |
|      $      '      20=arithmetic alpha, beta=0,1', / '  18=clustered ',
 | |
|      $      'alpha, beta=0,1            21=random alpha, beta=0,1',
 | |
|      $      / ' Large & Small Matrices:', / '  22=(large, small)   ',
 | |
|      $      '23=(small,large)    24=(small,small)    25=(large,large)',
 | |
|      $      / '  26=random O(1) matrices.' )
 | |
| *
 | |
|  9993 FORMAT( / ' Tests performed:    ',
 | |
|      $      / ' 1 = max | ( b A - a B )''*l | / const.,',
 | |
|      $      / ' 2 = | |VR(i)| - 1 | / ulp,',
 | |
|      $      / ' 3 = max | ( b A - a B )*r | / const.',
 | |
|      $      / ' 4 = | |VL(i)| - 1 | / ulp,',
 | |
|      $      / ' 5 = 0 if W same no matter if r or l computed,',
 | |
|      $      / ' 6 = 0 if l same no matter if l computed,',
 | |
|      $      / ' 7 = 0 if r same no matter if r computed,', / 1X )
 | |
|  9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
 | |
|      $      4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
 | |
|  9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
 | |
|      $      4( I4, ',' ), ' result ', I2, ' is', 1P, D10.3 )
 | |
| *
 | |
| *     End of DDRGEV3
 | |
| *
 | |
|       END
 |