224 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| C> \brief \b ZGETRF VARIANT: Crout Level 3 BLAS version of the algorithm.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGETRF ( M, N, A, LDA, IPIV, INFO)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX*16         A( LDA, * )
 | |
| *       ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| C>\details \b Purpose:
 | |
| C>\verbatim
 | |
| C>
 | |
| C> ZGETRF computes an LU factorization of a general M-by-N matrix A
 | |
| C> using partial pivoting with row interchanges.
 | |
| C>
 | |
| C> The factorization has the form
 | |
| C>    A = P * L * U
 | |
| C> where P is a permutation matrix, L is lower triangular with unit
 | |
| C> diagonal elements (lower trapezoidal if m > n), and U is upper
 | |
| C> triangular (upper trapezoidal if m < n).
 | |
| C>
 | |
| C> This is the Crout Level 3 BLAS version of the algorithm.
 | |
| C>
 | |
| C>\endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| C> \param[in] M
 | |
| C> \verbatim
 | |
| C>          M is INTEGER
 | |
| C>          The number of rows of the matrix A.  M >= 0.
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[in] N
 | |
| C> \verbatim
 | |
| C>          N is INTEGER
 | |
| C>          The number of columns of the matrix A.  N >= 0.
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[in,out] A
 | |
| C> \verbatim
 | |
| C>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| C>          On entry, the M-by-N matrix to be factored.
 | |
| C>          On exit, the factors L and U from the factorization
 | |
| C>          A = P*L*U; the unit diagonal elements of L are not stored.
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[in] LDA
 | |
| C> \verbatim
 | |
| C>          LDA is INTEGER
 | |
| C>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[out] IPIV
 | |
| C> \verbatim
 | |
| C>          IPIV is INTEGER array, dimension (min(M,N))
 | |
| C>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | |
| C>          matrix was interchanged with row IPIV(i).
 | |
| C> \endverbatim
 | |
| C>
 | |
| C> \param[out] INFO
 | |
| C> \verbatim
 | |
| C>          INFO is INTEGER
 | |
| C>          = 0:  successful exit
 | |
| C>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| C>          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
 | |
| C>                has been completed, but the factor U is exactly
 | |
| C>                singular, and division by zero will occur if it is used
 | |
| C>                to solve a system of equations.
 | |
| C> \endverbatim
 | |
| C>
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| C> \author Univ. of Tennessee
 | |
| C> \author Univ. of California Berkeley
 | |
| C> \author Univ. of Colorado Denver
 | |
| C> \author NAG Ltd.
 | |
| *
 | |
| C> \date December 2016
 | |
| *
 | |
| C> \ingroup variantsGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGETRF ( M, N, A, LDA, IPIV, INFO)
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX*16         A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ONE
 | |
|       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IINFO, J, JB, NB
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMM, ZGETF2, ZLASWP, ZTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGETRF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine the block size for this environment.
 | |
| *
 | |
|       NB = ILAENV( 1, 'ZGETRF', ' ', M, N, -1, -1 )
 | |
|       IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
 | |
| *
 | |
| *        Use unblocked code.
 | |
| *
 | |
|          CALL ZGETF2( M, N, A, LDA, IPIV, INFO )
 | |
|       ELSE
 | |
| *
 | |
| *        Use blocked code.
 | |
| *
 | |
|          DO 20 J = 1, MIN( M, N ), NB
 | |
|             JB = MIN( MIN( M, N )-J+1, NB )
 | |
| *
 | |
| *           Update current block.
 | |
| *
 | |
|             CALL ZGEMM( 'No transpose', 'No transpose',
 | |
|      $                 M-J+1, JB, J-1, -ONE,
 | |
|      $                 A( J, 1 ), LDA, A( 1, J ), LDA, ONE,
 | |
|      $                 A( J, J ), LDA )
 | |
| 
 | |
| *
 | |
| *           Factor diagonal and subdiagonal blocks and test for exact
 | |
| *           singularity.
 | |
| *
 | |
|             CALL ZGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
 | |
| *
 | |
| *           Adjust INFO and the pivot indices.
 | |
| *
 | |
|             IF( INFO.EQ.0 .AND. IINFO.GT.0 )
 | |
|      $         INFO = IINFO + J - 1
 | |
|             DO 10 I = J, MIN( M, J+JB-1 )
 | |
|                IPIV( I ) = J - 1 + IPIV( I )
 | |
|    10       CONTINUE
 | |
| *
 | |
| *           Apply interchanges to column 1:J-1
 | |
| *
 | |
|             CALL ZLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
 | |
| *
 | |
|             IF ( J+JB.LE.N ) THEN
 | |
| *
 | |
| *              Apply interchanges to column J+JB:N
 | |
| *
 | |
|                CALL ZLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
 | |
|      $                     IPIV, 1 )
 | |
| *
 | |
|                CALL ZGEMM( 'No transpose', 'No transpose',
 | |
|      $                    JB, N-J-JB+1, J-1, -ONE,
 | |
|      $                    A( J, 1 ), LDA, A( 1, J+JB ), LDA, ONE,
 | |
|      $                    A( J, J+JB ), LDA )
 | |
| *
 | |
| *              Compute block row of U.
 | |
| *
 | |
|                CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
 | |
|      $                    JB, N-J-JB+1, ONE, A( J, J ), LDA,
 | |
|      $                    A( J, J+JB ), LDA )
 | |
|             END IF
 | |
| 
 | |
|    20    CONTINUE
 | |
| 
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGETRF
 | |
| *
 | |
|       END
 |