175 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLARGE
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLARGE( N, A, LDA, ISEED, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( 4 )
 | 
						|
*       REAL               A( LDA, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLARGE pre- and post-multiplies a real general n by n matrix A
 | 
						|
*> with a random orthogonal matrix: A = U*D*U'.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the original n by n matrix A.
 | 
						|
*>          On exit, A is overwritten by U*A*U' for some random
 | 
						|
*>          orthogonal matrix U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry, the seed of the random number generator; the array
 | 
						|
*>          elements must be between 0 and 4095, and ISEED(4) must be
 | 
						|
*>          odd.
 | 
						|
*>          On exit, the seed is updated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup real_matgen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLARGE( N, A, LDA, ISEED, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
      REAL               A( LDA, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      REAL               TAU, WA, WB, WN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMV, SGER, SLARNV, SSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SIGN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SNRM2
 | 
						|
      EXTERNAL           SNRM2
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      END IF
 | 
						|
      IF( INFO.LT.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLARGE', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     pre- and post-multiply A by random orthogonal matrix
 | 
						|
*
 | 
						|
      DO 10 I = N, 1, -1
 | 
						|
*
 | 
						|
*        generate random reflection
 | 
						|
*
 | 
						|
         CALL SLARNV( 3, ISEED, N-I+1, WORK )
 | 
						|
         WN = SNRM2( N-I+1, WORK, 1 )
 | 
						|
         WA = SIGN( WN, WORK( 1 ) )
 | 
						|
         IF( WN.EQ.ZERO ) THEN
 | 
						|
            TAU = ZERO
 | 
						|
         ELSE
 | 
						|
            WB = WORK( 1 ) + WA
 | 
						|
            CALL SSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
 | 
						|
            WORK( 1 ) = ONE
 | 
						|
            TAU = WB / WA
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        multiply A(i:n,1:n) by random reflection from the left
 | 
						|
*
 | 
						|
         CALL SGEMV( 'Transpose', N-I+1, N, ONE, A( I, 1 ), LDA, WORK,
 | 
						|
     $               1, ZERO, WORK( N+1 ), 1 )
 | 
						|
         CALL SGER( N-I+1, N, -TAU, WORK, 1, WORK( N+1 ), 1, A( I, 1 ),
 | 
						|
     $              LDA )
 | 
						|
*
 | 
						|
*        multiply A(1:n,i:n) by random reflection from the right
 | 
						|
*
 | 
						|
         CALL SGEMV( 'No transpose', N, N-I+1, ONE, A( 1, I ), LDA,
 | 
						|
     $               WORK, 1, ZERO, WORK( N+1 ), 1 )
 | 
						|
         CALL SGER( N, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, A( 1, I ),
 | 
						|
     $              LDA )
 | 
						|
   10 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLARGE
 | 
						|
*
 | 
						|
      END
 |