560 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			560 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLALS0 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clals0.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clals0.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clals0.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
 | 
						|
*                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
 | 
						|
*                          POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
 | 
						|
*      $                   LDGNUM, NL, NR, NRHS, SQRE
 | 
						|
*       REAL               C, S
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
 | 
						|
*       REAL               DIFL( * ), DIFR( LDGNUM, * ),
 | 
						|
*      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
 | 
						|
*      $                   RWORK( * ), Z( * )
 | 
						|
*       COMPLEX            B( LDB, * ), BX( LDBX, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLALS0 applies back the multiplying factors of either the left or the
 | 
						|
*> right singular vector matrix of a diagonal matrix appended by a row
 | 
						|
*> to the right hand side matrix B in solving the least squares problem
 | 
						|
*> using the divide-and-conquer SVD approach.
 | 
						|
*>
 | 
						|
*> For the left singular vector matrix, three types of orthogonal
 | 
						|
*> matrices are involved:
 | 
						|
*>
 | 
						|
*> (1L) Givens rotations: the number of such rotations is GIVPTR; the
 | 
						|
*>      pairs of columns/rows they were applied to are stored in GIVCOL;
 | 
						|
*>      and the C- and S-values of these rotations are stored in GIVNUM.
 | 
						|
*>
 | 
						|
*> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
 | 
						|
*>      row, and for J=2:N, PERM(J)-th row of B is to be moved to the
 | 
						|
*>      J-th row.
 | 
						|
*>
 | 
						|
*> (3L) The left singular vector matrix of the remaining matrix.
 | 
						|
*>
 | 
						|
*> For the right singular vector matrix, four types of orthogonal
 | 
						|
*> matrices are involved:
 | 
						|
*>
 | 
						|
*> (1R) The right singular vector matrix of the remaining matrix.
 | 
						|
*>
 | 
						|
*> (2R) If SQRE = 1, one extra Givens rotation to generate the right
 | 
						|
*>      null space.
 | 
						|
*>
 | 
						|
*> (3R) The inverse transformation of (2L).
 | 
						|
*>
 | 
						|
*> (4R) The inverse transformation of (1L).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ICOMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          ICOMPQ is INTEGER
 | 
						|
*>         Specifies whether singular vectors are to be computed in
 | 
						|
*>         factored form:
 | 
						|
*>         = 0: Left singular vector matrix.
 | 
						|
*>         = 1: Right singular vector matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NL
 | 
						|
*> \verbatim
 | 
						|
*>          NL is INTEGER
 | 
						|
*>         The row dimension of the upper block. NL >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NR
 | 
						|
*> \verbatim
 | 
						|
*>          NR is INTEGER
 | 
						|
*>         The row dimension of the lower block. NR >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SQRE
 | 
						|
*> \verbatim
 | 
						|
*>          SQRE is INTEGER
 | 
						|
*>         = 0: the lower block is an NR-by-NR square matrix.
 | 
						|
*>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
 | 
						|
*>
 | 
						|
*>         The bidiagonal matrix has row dimension N = NL + NR + 1,
 | 
						|
*>         and column dimension M = N + SQRE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>         The number of columns of B and BX. NRHS must be at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension ( LDB, NRHS )
 | 
						|
*>         On input, B contains the right hand sides of the least
 | 
						|
*>         squares problem in rows 1 through M. On output, B contains
 | 
						|
*>         the solution X in rows 1 through N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>         The leading dimension of B. LDB must be at least
 | 
						|
*>         max(1,MAX( M, N ) ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BX
 | 
						|
*> \verbatim
 | 
						|
*>          BX is COMPLEX array, dimension ( LDBX, NRHS )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDBX
 | 
						|
*> \verbatim
 | 
						|
*>          LDBX is INTEGER
 | 
						|
*>         The leading dimension of BX.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PERM
 | 
						|
*> \verbatim
 | 
						|
*>          PERM is INTEGER array, dimension ( N )
 | 
						|
*>         The permutations (from deflation and sorting) applied
 | 
						|
*>         to the two blocks.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVPTR
 | 
						|
*> \verbatim
 | 
						|
*>          GIVPTR is INTEGER
 | 
						|
*>         The number of Givens rotations which took place in this
 | 
						|
*>         subproblem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVCOL
 | 
						|
*> \verbatim
 | 
						|
*>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
 | 
						|
*>         Each pair of numbers indicates a pair of rows/columns
 | 
						|
*>         involved in a Givens rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDGCOL
 | 
						|
*> \verbatim
 | 
						|
*>          LDGCOL is INTEGER
 | 
						|
*>         The leading dimension of GIVCOL, must be at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVNUM
 | 
						|
*> \verbatim
 | 
						|
*>          GIVNUM is REAL array, dimension ( LDGNUM, 2 )
 | 
						|
*>         Each number indicates the C or S value used in the
 | 
						|
*>         corresponding Givens rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDGNUM
 | 
						|
*> \verbatim
 | 
						|
*>          LDGNUM is INTEGER
 | 
						|
*>         The leading dimension of arrays DIFR, POLES and
 | 
						|
*>         GIVNUM, must be at least K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] POLES
 | 
						|
*> \verbatim
 | 
						|
*>          POLES is REAL array, dimension ( LDGNUM, 2 )
 | 
						|
*>         On entry, POLES(1:K, 1) contains the new singular
 | 
						|
*>         values obtained from solving the secular equation, and
 | 
						|
*>         POLES(1:K, 2) is an array containing the poles in the secular
 | 
						|
*>         equation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIFL
 | 
						|
*> \verbatim
 | 
						|
*>          DIFL is REAL array, dimension ( K ).
 | 
						|
*>         On entry, DIFL(I) is the distance between I-th updated
 | 
						|
*>         (undeflated) singular value and the I-th (undeflated) old
 | 
						|
*>         singular value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIFR
 | 
						|
*> \verbatim
 | 
						|
*>          DIFR is REAL array, dimension ( LDGNUM, 2 ).
 | 
						|
*>         On entry, DIFR(I, 1) contains the distances between I-th
 | 
						|
*>         updated (undeflated) singular value and the I+1-th
 | 
						|
*>         (undeflated) old singular value. And DIFR(I, 2) is the
 | 
						|
*>         normalizing factor for the I-th right singular vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension ( K )
 | 
						|
*>         Contain the components of the deflation-adjusted updating row
 | 
						|
*>         vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>         Contains the dimension of the non-deflated matrix,
 | 
						|
*>         This is the order of the related secular equation. 1 <= K <=N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL
 | 
						|
*>         C contains garbage if SQRE =0 and the C-value of a Givens
 | 
						|
*>         rotation related to the right null space if SQRE = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL
 | 
						|
*>         S contains garbage if SQRE =0 and the S-value of a Givens
 | 
						|
*>         rotation related to the right null space if SQRE = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension
 | 
						|
*>         ( K*(1+NRHS) + 2*NRHS )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | 
						|
*>       California at Berkeley, USA \n
 | 
						|
*>     Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
 | 
						|
     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
 | 
						|
     $                   POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
 | 
						|
     $                   LDGNUM, NL, NR, NRHS, SQRE
 | 
						|
      REAL               C, S
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
 | 
						|
      REAL               DIFL( * ), DIFR( LDGNUM, * ),
 | 
						|
     $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
 | 
						|
     $                   RWORK( * ), Z( * )
 | 
						|
      COMPLEX            B( LDB, * ), BX( LDBX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO, NEGONE
 | 
						|
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0, NEGONE = -1.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, JCOL, JROW, M, N, NLP1
 | 
						|
      REAL               DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CLACPY, CLASCL, CSROT, CSSCAL, SGEMV,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMC3, SNRM2
 | 
						|
      EXTERNAL           SLAMC3, SNRM2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          AIMAG, CMPLX, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NL.LT.1 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NR.LT.1 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      N = NL + NR + 1
 | 
						|
*
 | 
						|
      IF( NRHS.LT.1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.N ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDBX.LT.N ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( GIVPTR.LT.0 ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LDGCOL.LT.N ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( LDGNUM.LT.N ) THEN
 | 
						|
         INFO = -15
 | 
						|
      ELSE IF( K.LT.1 ) THEN
 | 
						|
         INFO = -20
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLALS0', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      M = N + SQRE
 | 
						|
      NLP1 = NL + 1
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Apply back orthogonal transformations from the left.
 | 
						|
*
 | 
						|
*        Step (1L): apply back the Givens rotations performed.
 | 
						|
*
 | 
						|
         DO 10 I = 1, GIVPTR
 | 
						|
            CALL CSROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
 | 
						|
     $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
 | 
						|
     $                  GIVNUM( I, 1 ) )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        Step (2L): permute rows of B.
 | 
						|
*
 | 
						|
         CALL CCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
 | 
						|
         DO 20 I = 2, N
 | 
						|
            CALL CCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Step (3L): apply the inverse of the left singular vector
 | 
						|
*        matrix to BX.
 | 
						|
*
 | 
						|
         IF( K.EQ.1 ) THEN
 | 
						|
            CALL CCOPY( NRHS, BX, LDBX, B, LDB )
 | 
						|
            IF( Z( 1 ).LT.ZERO ) THEN
 | 
						|
               CALL CSSCAL( NRHS, NEGONE, B, LDB )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            DO 100 J = 1, K
 | 
						|
               DIFLJ = DIFL( J )
 | 
						|
               DJ = POLES( J, 1 )
 | 
						|
               DSIGJ = -POLES( J, 2 )
 | 
						|
               IF( J.LT.K ) THEN
 | 
						|
                  DIFRJ = -DIFR( J, 1 )
 | 
						|
                  DSIGJP = -POLES( J+1, 2 )
 | 
						|
               END IF
 | 
						|
               IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
 | 
						|
     $              THEN
 | 
						|
                  RWORK( J ) = ZERO
 | 
						|
               ELSE
 | 
						|
                  RWORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
 | 
						|
     $                         ( POLES( J, 2 )+DJ )
 | 
						|
               END IF
 | 
						|
               DO 30 I = 1, J - 1
 | 
						|
                  IF( ( Z( I ).EQ.ZERO ) .OR.
 | 
						|
     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
 | 
						|
                     RWORK( I ) = ZERO
 | 
						|
                  ELSE
 | 
						|
                     RWORK( I ) = POLES( I, 2 )*Z( I ) /
 | 
						|
     $                            ( SLAMC3( POLES( I, 2 ), DSIGJ )-
 | 
						|
     $                            DIFLJ ) / ( POLES( I, 2 )+DJ )
 | 
						|
                  END IF
 | 
						|
   30          CONTINUE
 | 
						|
               DO 40 I = J + 1, K
 | 
						|
                  IF( ( Z( I ).EQ.ZERO ) .OR.
 | 
						|
     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
 | 
						|
                     RWORK( I ) = ZERO
 | 
						|
                  ELSE
 | 
						|
                     RWORK( I ) = POLES( I, 2 )*Z( I ) /
 | 
						|
     $                            ( SLAMC3( POLES( I, 2 ), DSIGJP )+
 | 
						|
     $                            DIFRJ ) / ( POLES( I, 2 )+DJ )
 | 
						|
                  END IF
 | 
						|
   40          CONTINUE
 | 
						|
               RWORK( 1 ) = NEGONE
 | 
						|
               TEMP = SNRM2( K, RWORK, 1 )
 | 
						|
*
 | 
						|
*              Since B and BX are complex, the following call to SGEMV
 | 
						|
*              is performed in two steps (real and imaginary parts).
 | 
						|
*
 | 
						|
*              CALL SGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
 | 
						|
*    $                     B( J, 1 ), LDB )
 | 
						|
*
 | 
						|
               I = K + NRHS*2
 | 
						|
               DO 60 JCOL = 1, NRHS
 | 
						|
                  DO 50 JROW = 1, K
 | 
						|
                     I = I + 1
 | 
						|
                     RWORK( I ) = REAL( BX( JROW, JCOL ) )
 | 
						|
   50             CONTINUE
 | 
						|
   60          CONTINUE
 | 
						|
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | 
						|
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
 | 
						|
               I = K + NRHS*2
 | 
						|
               DO 80 JCOL = 1, NRHS
 | 
						|
                  DO 70 JROW = 1, K
 | 
						|
                     I = I + 1
 | 
						|
                     RWORK( I ) = AIMAG( BX( JROW, JCOL ) )
 | 
						|
   70             CONTINUE
 | 
						|
   80          CONTINUE
 | 
						|
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | 
						|
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
 | 
						|
               DO 90 JCOL = 1, NRHS
 | 
						|
                  B( J, JCOL ) = CMPLX( RWORK( JCOL+K ),
 | 
						|
     $                           RWORK( JCOL+K+NRHS ) )
 | 
						|
   90          CONTINUE
 | 
						|
               CALL CLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
 | 
						|
     $                      LDB, INFO )
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Move the deflated rows of BX to B also.
 | 
						|
*
 | 
						|
         IF( K.LT.MAX( M, N ) )
 | 
						|
     $      CALL CLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
 | 
						|
     $                   B( K+1, 1 ), LDB )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Apply back the right orthogonal transformations.
 | 
						|
*
 | 
						|
*        Step (1R): apply back the new right singular vector matrix
 | 
						|
*        to B.
 | 
						|
*
 | 
						|
         IF( K.EQ.1 ) THEN
 | 
						|
            CALL CCOPY( NRHS, B, LDB, BX, LDBX )
 | 
						|
         ELSE
 | 
						|
            DO 180 J = 1, K
 | 
						|
               DSIGJ = POLES( J, 2 )
 | 
						|
               IF( Z( J ).EQ.ZERO ) THEN
 | 
						|
                  RWORK( J ) = ZERO
 | 
						|
               ELSE
 | 
						|
                  RWORK( J ) = -Z( J ) / DIFL( J ) /
 | 
						|
     $                         ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
 | 
						|
               END IF
 | 
						|
               DO 110 I = 1, J - 1
 | 
						|
                  IF( Z( J ).EQ.ZERO ) THEN
 | 
						|
                     RWORK( I ) = ZERO
 | 
						|
                  ELSE
 | 
						|
                     RWORK( I ) = Z( J ) / ( SLAMC3( DSIGJ, -POLES( I+1,
 | 
						|
     $                            2 ) )-DIFR( I, 1 ) ) /
 | 
						|
     $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
 | 
						|
                  END IF
 | 
						|
  110          CONTINUE
 | 
						|
               DO 120 I = J + 1, K
 | 
						|
                  IF( Z( J ).EQ.ZERO ) THEN
 | 
						|
                     RWORK( I ) = ZERO
 | 
						|
                  ELSE
 | 
						|
                     RWORK( I ) = Z( J ) / ( SLAMC3( DSIGJ, -POLES( I,
 | 
						|
     $                            2 ) )-DIFL( I ) ) /
 | 
						|
     $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
 | 
						|
                  END IF
 | 
						|
  120          CONTINUE
 | 
						|
*
 | 
						|
*              Since B and BX are complex, the following call to SGEMV
 | 
						|
*              is performed in two steps (real and imaginary parts).
 | 
						|
*
 | 
						|
*              CALL SGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
 | 
						|
*    $                     BX( J, 1 ), LDBX )
 | 
						|
*
 | 
						|
               I = K + NRHS*2
 | 
						|
               DO 140 JCOL = 1, NRHS
 | 
						|
                  DO 130 JROW = 1, K
 | 
						|
                     I = I + 1
 | 
						|
                     RWORK( I ) = REAL( B( JROW, JCOL ) )
 | 
						|
  130             CONTINUE
 | 
						|
  140          CONTINUE
 | 
						|
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | 
						|
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
 | 
						|
               I = K + NRHS*2
 | 
						|
               DO 160 JCOL = 1, NRHS
 | 
						|
                  DO 150 JROW = 1, K
 | 
						|
                     I = I + 1
 | 
						|
                     RWORK( I ) = AIMAG( B( JROW, JCOL ) )
 | 
						|
  150             CONTINUE
 | 
						|
  160          CONTINUE
 | 
						|
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | 
						|
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
 | 
						|
               DO 170 JCOL = 1, NRHS
 | 
						|
                  BX( J, JCOL ) = CMPLX( RWORK( JCOL+K ),
 | 
						|
     $                            RWORK( JCOL+K+NRHS ) )
 | 
						|
  170          CONTINUE
 | 
						|
  180       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Step (2R): if SQRE = 1, apply back the rotation that is
 | 
						|
*        related to the right null space of the subproblem.
 | 
						|
*
 | 
						|
         IF( SQRE.EQ.1 ) THEN
 | 
						|
            CALL CCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
 | 
						|
            CALL CSROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
 | 
						|
         END IF
 | 
						|
         IF( K.LT.MAX( M, N ) )
 | 
						|
     $      CALL CLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB,
 | 
						|
     $                   BX( K+1, 1 ), LDBX )
 | 
						|
*
 | 
						|
*        Step (3R): permute rows of B.
 | 
						|
*
 | 
						|
         CALL CCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
 | 
						|
         IF( SQRE.EQ.1 ) THEN
 | 
						|
            CALL CCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
 | 
						|
         END IF
 | 
						|
         DO 190 I = 2, N
 | 
						|
            CALL CCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
 | 
						|
  190    CONTINUE
 | 
						|
*
 | 
						|
*        Step (4R): apply back the Givens rotations performed.
 | 
						|
*
 | 
						|
         DO 200 I = GIVPTR, 1, -1
 | 
						|
            CALL CSROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
 | 
						|
     $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
 | 
						|
     $                  -GIVNUM( I, 1 ) )
 | 
						|
  200    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLALS0
 | 
						|
*
 | 
						|
      END
 |