370 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZSYMM
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       COMPLEX*16 ALPHA,BETA
 | 
						|
*       INTEGER LDA,LDB,LDC,M,N
 | 
						|
*       CHARACTER SIDE,UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZSYMM  performs one of the matrix-matrix operations
 | 
						|
*>
 | 
						|
*>    C := alpha*A*B + beta*C,
 | 
						|
*>
 | 
						|
*> or
 | 
						|
*>
 | 
						|
*>    C := alpha*B*A + beta*C,
 | 
						|
*>
 | 
						|
*> where  alpha and beta are scalars, A is a symmetric matrix and  B and
 | 
						|
*> C are m by n matrices.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>           On entry,  SIDE  specifies whether  the  symmetric matrix  A
 | 
						|
*>           appears on the  left or right  in the  operation as follows:
 | 
						|
*>
 | 
						|
*>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
 | 
						|
*>
 | 
						|
*>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | 
						|
*>           triangular  part  of  the  symmetric  matrix   A  is  to  be
 | 
						|
*>           referenced as follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   Only the upper triangular part of the
 | 
						|
*>                                  symmetric matrix is to be referenced.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   Only the lower triangular part of the
 | 
						|
*>                                  symmetric matrix is to be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           On entry,  M  specifies the number of rows of the matrix  C.
 | 
						|
*>           M  must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the number of columns of the matrix C.
 | 
						|
*>           N  must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
 | 
						|
*>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
 | 
						|
*>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
 | 
						|
*>           the array  A  must contain the  symmetric matrix,  such that
 | 
						|
*>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
 | 
						|
*>           part of the array  A  must contain the upper triangular part
 | 
						|
*>           of the  symmetric matrix and the  strictly  lower triangular
 | 
						|
*>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | 
						|
*>           the leading  m by m  lower triangular part  of the  array  A
 | 
						|
*>           must  contain  the  lower triangular part  of the  symmetric
 | 
						|
*>           matrix and the  strictly upper triangular part of  A  is not
 | 
						|
*>           referenced.
 | 
						|
*>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
 | 
						|
*>           the array  A  must contain the  symmetric matrix,  such that
 | 
						|
*>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
 | 
						|
*>           part of the array  A  must contain the upper triangular part
 | 
						|
*>           of the  symmetric matrix and the  strictly  lower triangular
 | 
						|
*>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | 
						|
*>           the leading  n by n  lower triangular part  of the  array  A
 | 
						|
*>           must  contain  the  lower triangular part  of the  symmetric
 | 
						|
*>           matrix and the  strictly upper triangular part of  A  is not
 | 
						|
*>           referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
 | 
						|
*>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 | 
						|
*>           least max( 1, n ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array of DIMENSION ( LDB, n ).
 | 
						|
*>           Before entry, the leading  m by n part of the array  B  must
 | 
						|
*>           contain the matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>           On entry, LDB specifies the first dimension of B as declared
 | 
						|
*>           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | 
						|
*>           max( 1, m ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is COMPLEX*16
 | 
						|
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
 | 
						|
*>           supplied as zero then C need not be set on input.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array of DIMENSION ( LDC, n ).
 | 
						|
*>           Before entry, the leading  m by n  part of the array  C must
 | 
						|
*>           contain the matrix  C,  except when  beta  is zero, in which
 | 
						|
*>           case C need not be set on entry.
 | 
						|
*>           On exit, the array  C  is overwritten by the  m by n updated
 | 
						|
*>           matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>           On entry, LDC specifies the first dimension of C as declared
 | 
						|
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | 
						|
*>           max( 1, m ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_blas_level3
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 3 Blas routine.
 | 
						|
*>
 | 
						|
*>  -- Written on 8-February-1989.
 | 
						|
*>     Jack Dongarra, Argonne National Laboratory.
 | 
						|
*>     Iain Duff, AERE Harwell.
 | 
						|
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | 
						|
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level3 routine (version 3.4.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      COMPLEX*16 ALPHA,BETA
 | 
						|
      INTEGER LDA,LDB,LDC,M,N
 | 
						|
      CHARACTER SIDE,UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC MAX
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX*16 TEMP1,TEMP2
 | 
						|
      INTEGER I,INFO,J,K,NROWA
 | 
						|
      LOGICAL UPPER
 | 
						|
*     ..
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16 ONE
 | 
						|
      PARAMETER (ONE= (1.0D+0,0.0D+0))
 | 
						|
      COMPLEX*16 ZERO
 | 
						|
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Set NROWA as the number of rows of A.
 | 
						|
*
 | 
						|
      IF (LSAME(SIDE,'L')) THEN
 | 
						|
          NROWA = M
 | 
						|
      ELSE
 | 
						|
          NROWA = N
 | 
						|
      END IF
 | 
						|
      UPPER = LSAME(UPLO,'U')
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (M.LT.0) THEN
 | 
						|
          INFO = 3
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 4
 | 
						|
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | 
						|
          INFO = 7
 | 
						|
      ELSE IF (LDB.LT.MAX(1,M)) THEN
 | 
						|
          INFO = 9
 | 
						|
      ELSE IF (LDC.LT.MAX(1,M)) THEN
 | 
						|
          INFO = 12
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('ZSYMM ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | 
						|
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | 
						|
*
 | 
						|
*     And when  alpha.eq.zero.
 | 
						|
*
 | 
						|
      IF (ALPHA.EQ.ZERO) THEN
 | 
						|
          IF (BETA.EQ.ZERO) THEN
 | 
						|
              DO 20 J = 1,N
 | 
						|
                  DO 10 I = 1,M
 | 
						|
                      C(I,J) = ZERO
 | 
						|
   10             CONTINUE
 | 
						|
   20         CONTINUE
 | 
						|
          ELSE
 | 
						|
              DO 40 J = 1,N
 | 
						|
                  DO 30 I = 1,M
 | 
						|
                      C(I,J) = BETA*C(I,J)
 | 
						|
   30             CONTINUE
 | 
						|
   40         CONTINUE
 | 
						|
          END IF
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations.
 | 
						|
*
 | 
						|
      IF (LSAME(SIDE,'L')) THEN
 | 
						|
*
 | 
						|
*        Form  C := alpha*A*B + beta*C.
 | 
						|
*
 | 
						|
          IF (UPPER) THEN
 | 
						|
              DO 70 J = 1,N
 | 
						|
                  DO 60 I = 1,M
 | 
						|
                      TEMP1 = ALPHA*B(I,J)
 | 
						|
                      TEMP2 = ZERO
 | 
						|
                      DO 50 K = 1,I - 1
 | 
						|
                          C(K,J) = C(K,J) + TEMP1*A(K,I)
 | 
						|
                          TEMP2 = TEMP2 + B(K,J)*A(K,I)
 | 
						|
   50                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
 | 
						|
     +                             ALPHA*TEMP2
 | 
						|
                      END IF
 | 
						|
   60             CONTINUE
 | 
						|
   70         CONTINUE
 | 
						|
          ELSE
 | 
						|
              DO 100 J = 1,N
 | 
						|
                  DO 90 I = M,1,-1
 | 
						|
                      TEMP1 = ALPHA*B(I,J)
 | 
						|
                      TEMP2 = ZERO
 | 
						|
                      DO 80 K = I + 1,M
 | 
						|
                          C(K,J) = C(K,J) + TEMP1*A(K,I)
 | 
						|
                          TEMP2 = TEMP2 + B(K,J)*A(K,I)
 | 
						|
   80                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
 | 
						|
     +                             ALPHA*TEMP2
 | 
						|
                      END IF
 | 
						|
   90             CONTINUE
 | 
						|
  100         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  C := alpha*B*A + beta*C.
 | 
						|
*
 | 
						|
          DO 170 J = 1,N
 | 
						|
              TEMP1 = ALPHA*A(J,J)
 | 
						|
              IF (BETA.EQ.ZERO) THEN
 | 
						|
                  DO 110 I = 1,M
 | 
						|
                      C(I,J) = TEMP1*B(I,J)
 | 
						|
  110             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 120 I = 1,M
 | 
						|
                      C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
 | 
						|
  120             CONTINUE
 | 
						|
              END IF
 | 
						|
              DO 140 K = 1,J - 1
 | 
						|
                  IF (UPPER) THEN
 | 
						|
                      TEMP1 = ALPHA*A(K,J)
 | 
						|
                  ELSE
 | 
						|
                      TEMP1 = ALPHA*A(J,K)
 | 
						|
                  END IF
 | 
						|
                  DO 130 I = 1,M
 | 
						|
                      C(I,J) = C(I,J) + TEMP1*B(I,K)
 | 
						|
  130             CONTINUE
 | 
						|
  140         CONTINUE
 | 
						|
              DO 160 K = J + 1,N
 | 
						|
                  IF (UPPER) THEN
 | 
						|
                      TEMP1 = ALPHA*A(J,K)
 | 
						|
                  ELSE
 | 
						|
                      TEMP1 = ALPHA*A(K,J)
 | 
						|
                  END IF
 | 
						|
                  DO 150 I = 1,M
 | 
						|
                      C(I,J) = C(I,J) + TEMP1*B(I,K)
 | 
						|
  150             CONTINUE
 | 
						|
  160         CONTINUE
 | 
						|
  170     CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZSYMM .
 | 
						|
*
 | 
						|
      END
 |