187 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STZT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL             FUNCTION STZT01( M, N, A, AF, LDA, TAU, WORK,
 | |
| *                        LWORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), AF( LDA, * ), TAU( * ),
 | |
| *      $                   WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STZT01 returns
 | |
| *>      || A - R*Q || / ( M * eps * ||A|| )
 | |
| *> for an upper trapezoidal A that was factored with STZRQF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrices A and AF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and AF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          The original upper trapezoidal M by N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is REAL array, dimension (LDA,N)
 | |
| *>          The output of STZRQF for input matrix A.
 | |
| *>          The lower triangle is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A and AF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (M)
 | |
| *>          Details of the  Householder transformations as returned by
 | |
| *>          STZRQF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= m*n + m.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL             FUNCTION STZT01( M, N, A, AF, LDA, TAU, WORK,
 | |
|      $                 LWORK )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), AF( LDA, * ), TAU( * ),
 | |
|      $                   WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       REAL               NORMA
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               RWORK( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SLATZM, SLASET, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       STZT01 = ZERO
 | |
| *
 | |
|       IF( LWORK.LT.M*N+M ) THEN
 | |
|          CALL XERBLA( 'STZT01', 8 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       NORMA = SLANGE( 'One-norm', M, N, A, LDA, RWORK )
 | |
| *
 | |
| *     Copy upper triangle R
 | |
| *
 | |
|       CALL SLASET( 'Full', M, N, ZERO, ZERO, WORK, M )
 | |
|       DO 20 J = 1, M
 | |
|          DO 10 I = 1, J
 | |
|             WORK( ( J-1 )*M+I ) = AF( I, J )
 | |
|    10    CONTINUE
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     R = R * P(1) * ... *P(m)
 | |
| *
 | |
|       DO 30 I = 1, M
 | |
|          CALL SLATZM( 'Right', I, N-M+1, AF( I, M+1 ), LDA, TAU( I ),
 | |
|      $                WORK( ( I-1 )*M+1 ), WORK( M*M+1 ), M,
 | |
|      $                WORK( M*N+1 ) )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     R = R - A
 | |
| *
 | |
|       DO 40 I = 1, N
 | |
|          CALL SAXPY( M, -ONE, A( 1, I ), 1, WORK( ( I-1 )*M+1 ), 1 )
 | |
|    40 CONTINUE
 | |
| *
 | |
|       STZT01 = SLANGE( 'One-norm', M, N, WORK, M, RWORK )
 | |
| *
 | |
|       STZT01 = STZT01 / ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
 | |
|       IF( NORMA.NE.ZERO )
 | |
|      $   STZT01 = STZT01 / NORMA
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STZT01
 | |
| *
 | |
|       END
 |