272 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZBDT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
 | |
| *                          RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            KD, LDU, LDVT, N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), S( * )
 | |
| *       COMPLEX*16         U( LDU, * ), VT( LDVT, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZBDT03 reconstructs a bidiagonal matrix B from its SVD:
 | |
| *>    S = U' * B * V
 | |
| *> where U and V are orthogonal matrices and S is diagonal.
 | |
| *>
 | |
| *> The test ratio to test the singular value decomposition is
 | |
| *>    RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
 | |
| *> where VT = V' and EPS is the machine precision.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix B is upper or lower bidiagonal.
 | |
| *>          = 'U':  Upper bidiagonal
 | |
| *>          = 'L':  Lower bidiagonal
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The bandwidth of the bidiagonal matrix B.  If KD = 1, the
 | |
| *>          matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
 | |
| *>          not referenced.  If KD is greater than 1, it is assumed to be
 | |
| *>          1, and if KD is less than 0, it is assumed to be 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The n diagonal elements of the bidiagonal matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The (n-1) superdiagonal elements of the bidiagonal matrix B
 | |
| *>          if UPLO = 'U', or the (n-1) subdiagonal elements of B if
 | |
| *>          UPLO = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX*16 array, dimension (LDU,N)
 | |
| *>          The n by n orthogonal matrix U in the reduction B = U'*A*P.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U.  LDU >= max(1,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The singular values from the SVD of B, sorted in decreasing
 | |
| *>          order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VT
 | |
| *> \verbatim
 | |
| *>          VT is COMPLEX*16 array, dimension (LDVT,N)
 | |
| *>          The n by n orthogonal matrix V' in the reduction
 | |
| *>          B = U * S * V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>          The leading dimension of the array VT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          The test ratio:  norm(B - U * S * V') / ( n * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            KD, LDU, LDVT, N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * ), S( * )
 | |
|       COMPLEX*16         U( LDU, * ), VT( LDVT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| * ======================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   BNORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH, DZASUM
 | |
|       EXTERNAL           LSAME, IDAMAX, DLAMCH, DZASUM
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       RESID = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Compute B - U * S * V' one column at a time.
 | |
| *
 | |
|       BNORM = ZERO
 | |
|       IF( KD.GE.1 ) THEN
 | |
| *
 | |
| *        B is bidiagonal.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *           B is upper bidiagonal.
 | |
| *
 | |
|             DO 20 J = 1, N
 | |
|                DO 10 I = 1, N
 | |
|                   WORK( N+I ) = S( I )*VT( I, J )
 | |
|    10          CONTINUE
 | |
|                CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
 | |
|      $                     WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
 | |
|                WORK( J ) = WORK( J ) + D( J )
 | |
|                IF( J.GT.1 ) THEN
 | |
|                   WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
 | |
|                   BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
 | |
|                ELSE
 | |
|                   BNORM = MAX( BNORM, ABS( D( J ) ) )
 | |
|                END IF
 | |
|                RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
 | |
|    20       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           B is lower bidiagonal.
 | |
| *
 | |
|             DO 40 J = 1, N
 | |
|                DO 30 I = 1, N
 | |
|                   WORK( N+I ) = S( I )*VT( I, J )
 | |
|    30          CONTINUE
 | |
|                CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
 | |
|      $                     WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
 | |
|                WORK( J ) = WORK( J ) + D( J )
 | |
|                IF( J.LT.N ) THEN
 | |
|                   WORK( J+1 ) = WORK( J+1 ) + E( J )
 | |
|                   BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
 | |
|                ELSE
 | |
|                   BNORM = MAX( BNORM, ABS( D( J ) ) )
 | |
|                END IF
 | |
|                RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        B is diagonal.
 | |
| *
 | |
|          DO 60 J = 1, N
 | |
|             DO 50 I = 1, N
 | |
|                WORK( N+I ) = S( I )*VT( I, J )
 | |
|    50       CONTINUE
 | |
|             CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
 | |
|      $                  WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
 | |
|             WORK( J ) = WORK( J ) + D( J )
 | |
|             RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
 | |
|    60    CONTINUE
 | |
|          J = IDAMAX( N, D, 1 )
 | |
|          BNORM = ABS( D( J ) )
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
 | |
| *
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
| *
 | |
|       IF( BNORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          IF( BNORM.GE.RESID ) THEN
 | |
|             RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS )
 | |
|          ELSE
 | |
|             IF( BNORM.LT.ONE ) THEN
 | |
|                RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) /
 | |
|      $                 ( DBLE( N )*EPS )
 | |
|             ELSE
 | |
|                RESID = MIN( RESID / BNORM, DBLE( N ) ) /
 | |
|      $                 ( DBLE( N )*EPS )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZBDT03
 | |
| *
 | |
|       END
 |